Compact JILA system stabilizes laser frequency

July 27, 2005

A compact, inexpensive method for stabilizing lasers that uses a new design to reduce sensitivity to vibration and gravity 100 times better than similar approaches has been demonstrated by scientists at JILA in Boulder, Colo. JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder.

The method, described in the July 15 issue of Optics Letters,* stabilizes laser light to a single frequency, so that it can be used as a reliable reference oscillator for technologies such as optical clocks and light-based radar (lidar). The new stabilizer design performs better than similar systems of comparable size and is much smaller and less expensive than the best-performing systems, according to physicist John Hall, a co-author of the paper.

Laser systems are highly sensitive to environmental disturbances, such as electronic "noise" and vibration from soft drink vending machines or other equipment with mechanical motors. To stabilize operations in cases when high precision is needed, lasers are often "locked" to a single wavelength/frequency using an optical "cavity," a small glass cylinder with a mirror facing inward on each end. Laser light bounces back and forth between the mirrors and, depending on the exact distance between them, only one wavelength will "fit" that distance best and be reinforced with each reflection. Information from this stabilized laser light is then fed back to the laser source to keep the laser locked on this one frequency. But the cavity can vibrate, or expand in response to temperature changes, causing corresponding slight frequency changes. Researchers have tried various improvements such as using cavities made of low-expansion glass.

In the latest advance, the JILA team made the cavity shorter and positioned it vertically instead of horizontally, with symmetrical mounting supports so that gravity and vibration forces yield opposing distortions in the two halves, and thus balance out to zero net effect. The system was demonstrated with an infrared laser. "We designed the cavity so it doesn't care if it's vibrating," says Hall, who helped develop a leading resonant cavity design two decades ago. "We get good performance with a complete reduction of complexity and cost."
-end-
The work was supported by the Office of Naval Research, National Aeronautics and Space Administration, National Science Foundation and NIST.

*M. Notcutt, L.S. Ma, J. Ye, and J.L. Hall. 2005. Simple and compact 1-Hz laser system via improved mounting configuration of a reference cavity. Optics Letters. July 15.

National Institute of Standards and Technology (NIST)

Related Lasers Articles from Brightsurf:

Breaking the power and speed limit of lasers
Researchers at the George Washington University have developed a new design of vertical-cavity surface-emitting laser (VCSEL) that demonstrates record-fast temporal bandwidth.

Towards lasers powerful enough to investigate a new kind of physics
In a paper that made the cover of the journal Applied Physics Letters, an international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers.

A breakthrough in developing multi-watt terahertz lasers
Researchers from Lehigh University are reporting another terahertz technology breakthrough: they have developed a new phase-locking technique for plasmonic lasers and, through its use, achieved a record-high power output for terahertz lasers.

Lasers etch a 'perfect' solar energy absorber
In Light: Science and Applications, University of Rochester researchers demonstrate how laser etching of metallic surfaces creates the ''perfect solar energy absorber.'' This not only enhances energy absorption from sunlight, but also reduces heat dissipation at other wavelengths.

Fusion by strong lasers
Nuclear physics usually involves high energies, as illustrated by experiments to master controlled nuclear fusion.

Using lasers to study explosions
An explosion is a complex event involving quickly changing temperatures, pressures and chemical concentrations.

Powerful lasers for fragile works of art
Protecting artworks from the effects of aging requires an understanding of the way materials alter over time.

Physicists propose perfect material for lasers
Weyl semimetals are a recently discovered class of materials, in which charge carriers behave the way electrons and positrons do in particle accelerators.

Lasers make magnets behave like fluids
Researchers have discovered how magnets recover after being blasted by a laser.

Spin lasers facilitate rapid data transfer
Engineers have developed a novel concept for rapid data transfer via optical fibre cables.

Read More: Lasers News and Lasers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.