Orangutans unique in movement through tree tops

July 27, 2009

Movement through a complex meshwork of small branches at the heights of tropical forests presents a unique challenge to animals wanting to forage for food safely. It can be particularly dangerous for large animals where a fall of up to 30m could be fatal. Scientists found that dangerous tree vibrations can be countered by the orang-utan's ability to move with an irregular rhythm.

Professor Robin Crompton, from the University of Liverpool's School of Biomedical Sciences, explained that these challenges were similar to the difficulties engineers encountered with London's 'wobbly' Millennium Bridge: "The problems with the Millennium Bridge were caused by large numbers of people walking in sync with the slight sideways motion of the bridge. This regular pattern of movement made the swaying motion of the bridge even worse. We see a similar problem in the movement of animals through the canopy of tropical forests, where there are highly flexible branches.

"Most animals, such as the chimpanzee, respond to these challenges by flexing their limbs to bring their body closer to the branch. Orang-utans, however, are the largest arboreal mammal and so they are likely to face more severe difficulties due to weight. If they move in a regular fashion, like their smaller relatives, we get a 'wobbly bridge' situation, whereby the movement of the branches increases."

Dr Susannah Thorpe, from the University of Birmingham's School of Biosciences, added: "Orang-utans have developed a unique way of coping with these problems; they move in an irregular way which includes upright walking, four-limbed suspension from branches and tree-swaying, whereby they move branches backwards and forwards, with increasing magnitude, until they are able to cross large gaps between trees."

The team studied orang-utans in Sumatra, where the animal is predicted to be the first great ape to become extinct. This new research could further understanding into the way orang-utans use their habitat, which could support new conservation programmes.

Dr Thorpe continued: "If the destruction of forest land does not slow down, the Sumatran orang-utan could be extinct within the next decade. Now that we know more about how they move through the trees and the unique way that they adapt to challenges in their environment we can better understand their needs. This could help with reintroducing rescued animals to the forests and efforts to conserve their environment."

The research is published in Proceedings of the National Academy of Sciences.
-end-


University of Liverpool

Related Tropical Forests Articles from Brightsurf:

Restoring degraded tropical forests generates big carbon gains
An international team of scientists from 13 institutions has provided the first long-term comparison of aboveground carbon recovery rates between naturally regenerating and actively restored forests in Malaysian Borneo.

Warming threat to tropical forests risks release of carbon from soil
Billions of tonnes of carbon dioxide risk being lost into the atmosphere due to tropical forest soils being significantly more sensitive to climate change than previously thought.

New global study shows 'best of the last' tropical forests urgently need protection
The world's 'best of the last' tropical forests are at significant risk of being lost, according to a paper released today in Nature Ecology and Evolution.

Scientists identify a temperature tipping point for tropical forests
Carbon dioxide is an important greenhouse gas, released as fossil fuels are burned.

Tropical forests can handle the heat, up to a point
Tropical forests face an uncertain future under climate change, but new research published in Science suggests they can continue to store large amounts of carbon in a warmer world, if countries limit greenhouse gas emissions.

Long-term resilience of Earth's tropical forests in warmer world
A long-term assessment of the sensitivity of hundreds of tropical forest plots to increasing temperatures brings encouraging news: in the long run, Earth's tropical forests may be more resilient to a moderately warming world than short-term predictions have suggested.

Online tool helps to protect tropical forests
A new tool maps the threats to the tropical dry forests in Peru and Ecuador.

A glimpse into the future of tropical forests
Tropical forests are a hotspot of biodiversity. Against the backdrop of climate change, their protection plays a special role and it is important to predict how such diverse forests may change over decades and even centuries.

Shedding light on how much carbon tropical forests can absorb
Tropical forest ecosystems are an important part of the global carbon cycle as they take up and store large amounts of CO2.

Tropical forests' carbon sink is already rapidly weakening
The ability of the world's tropical forests to remove carbon from the atmosphere is decreasing, according to a study tracking 300,000 trees over 30 years, published today in Nature.

Read More: Tropical Forests News and Tropical Forests Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.