Novel therapeutic strategy for single gene disorders delivers RNA that encodes the missing protein

July 27, 2015

New Rochelle, NY, July 27, 2015--Researchers have demonstrated the feasibility of delivering an RNA that encodes for the protein alpha-1-antitrypsin (AAT)--which is missing or nonfunctional in the genetic disorder AAT deficiency--into cells in the laboratory, enabling the cells to produce highly functional AAT. This innovative approach to treating single gene disorders such as AAT deficiency offers and safe, simpler, and more cost-effective alternative to gene therapy or protein replacement, according to the authors of the study published in Nucleic Acid Therapeutics, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Nucleic Acid Therapeutics website until August 27, 2015.

In the article "In vitro Evaluation of a Novel mRNA-Based Therapeutic Strategy for the Treatment of Patients Suffering from Alpha-1-Antitrypsin Deficiency", Tatjana Michel, Stefanie Krajewski, and coauthors, University Medical Center, Tuebingen, Germany, produced a messenger RNA sequence that cells can translate to generate the AAT protein. The researchers assessed the stability and utility of the encapsulated RNA over time and evaluated the amount of AAT protein produced by the cells and how well the protein functioned. The data show no negative effects of the transfected RNA on the viability of the cells and no immune activation.

"The field is looking for advances in modified mRNA as a therapeutic strategy," says Executive Editor Graham C. Parker, PhD, The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Children's Hospital of Michigan, Detroit, MI. "Demonstrations such as this from the University Medical Center, Tuebingen, Germany, show real progress."
-end-
About the Journal

Nucleic Acid Therapeutics is an authoritative peer-reviewed journal published bimonthly in print and online that focuses on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. The Journal is under the editorial leadership of Editor-in-Chief Bruce A. Sullenger, PhD, Duke Translational Research Institute, Duke University Medical Center, Durham, NC, and Executive Editor Graham C. Parker, PhD. Nucleic Acid Therapeutics is the official journal of the Oligonucleotide Therapeutics Society. Complete tables of content and a sample issue may be viewed on the Nucleic Acid Therapeutics website.

About the Society

The Oligonucleotide Therapeutics Society is an open, non-profit forum to foster academia- and industry-based research and development of oligonucleotide therapeutics. The society brings together the expertise from different angles of oligonucleotide research to create synergies and to bring the field of oligonucleotides to its full therapeutic potential.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Human Gene Therapy, ASSAY and Drug Development Technologies, Applied In Vitro Toxicology, and DNA and Cell Biology. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

Mary Ann Liebert, Inc./Genetic Engineering News

Related Gene Therapy Articles from Brightsurf:

Risk of AAV mobilization in gene therapy
New data highlight safety concerns for the replication of recombinant adeno-associated viral (rAAV) vectors commonly used in gene therapy.

Discovery challenges the foundations of gene therapy
An article published today in Science Translational Medicine by scientists from Children's Medical Research Institute has challenged one of the foundations of the gene therapy field and will help to improve strategies for treating serious genetic disorders of the liver.

Gene therapy: Novel targets come into view
Retinitis pigmentosa is the most prevalent form of congenital blindness.

Gene therapy targets inner retina to combat blindness
Batten disease is a group of fatal, inherited lysosomal storage disorders that predominantly affect children.

New Human Gene Therapy editorial: Concern following gene therapy adverse events
Response to the recent report of the deaths of two children receiving high doses of a gene therapy vector (AAV8) in a Phase I trial for X-linked myotubular myopathy (MTM).

Restoring vision by gene therapy
Latest scientific findings give hope for people with incurable retinal degeneration.

Gene therapy/gene editing combo could offer hope for some genetic disorders
A hybrid approach that combines elements of gene therapy with gene editing converted an experimental model of a rare genetic disease into a milder form, significantly enhancing survival, shows a multi-institutional study led by the University of Pennsylvania and Children's National Hospital in Washington, D.C.

New technology allows control of gene therapy doses
Scientists at Scripps Research in Jupiter have developed a special molecular switch that could be embedded into gene therapies to allow doctors to control dosing.

Gene therapy: Development of new DNA transporters
Scientists at the Institute of Pharmacy at Martin Luther University Halle-Wittenberg (MLU) have developed new delivery vehicles for future gene therapies.

Gene therapy promotes nerve regeneration
Researchers from the Netherlands Institute for Neuroscience and the Leiden University Medical Center have shown that treatment using gene therapy leads to a faster recovery after nerve damage.

Read More: Gene Therapy News and Gene Therapy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.