Twin discoveries, 'eerie' effect may lead to manufacturing advances

July 27, 2015

WEST LAFAYETTE, Ind. - The discovery of a previously unknown type of metal deformation - sinuous flow - and a method to suppress it could lead to more efficient machining and other manufacturing advances by reducing the force and energy required to process metals.

Researchers at Purdue University discovered sinuous flow deformation and also were surprised to discover a potentially simple way to control it, said Srinivasan Chandrasekar, a professor of industrial engineering, who is working with W. Dale Compton, the Lillian M. Gilbreth Distinguished Professor Emeritus of Industrial Engineering, postdoctoral research associate Ho Yeung and graduate student Koushik Viswanathan.

The team discovered the phenomenon by using high-speed microphotography and analysis to study what happens while cutting ductile metals. They found that the metal is deformed into folds while it is being cut - contrary to long-held assumptions that metals are sheared uniformly - and also that sinuous flow can be controlled by suppressing this folding behavior.

"When the metal is sheared during a cutting process it forms these finely spaced folds, which we were able to see for the first time only because of direct observation in real time," Yeung said.

Findings showed the cutting force can be reduced 50 percent simply by painting metal with a standard marking ink. Because this painted layer was found to suppress sinuous flow, the implications are that not only can energy consumption be reduced by 50 percent but also that machining can be achieved faster and more efficiently and with improved surface quality, Chandrasekar said.

The findings are detailed in a research paper appearing this week (July 27) in Proceedings of the National Academy of Sciences.

"The fact that the metal can be cut easily with less pressure on the tool has significant implications," Compton said. "Machining efficiency is typically limited by force, so it is possible to machine at a much faster rate with the same power."

Applying less force also generates less heat and vibration, reducing tool wear and damage to the part being machined, which would improve the accuracy of the process while reducing cost, he said.

The discovery is intriguing to researchers because the ink was not added between the cutting tool and the metal; it was painted onto the free surface of the metal where it was not in direct contact with the tool.

"This may sound eerie, even ridiculous, to people in the field because the cutting is not happening on the painted surface, it is occurring at some depth below," Viswanathan said.

In one class of experiments, Yeung inked only half of a sample. When the cutting tool reached the inked portion, the amount of force dropped immediately by half, seemingly by magic.

He tested various coatings including the marking ink, nail polish, resins and commercial lubricants. He also tried first coating metal with a lubricant before adding the ink. Findings revealed that because the lubricant prevented the ink from sticking well to the surface, the suppression of the sinuous flow was less effective.

"It seems that the ink used commercially to mark metal is very good at suppressing the sinuous flow, probably because it is designed to stick well to metals," Chandrasekar said.

This discovery leaves open the possibility that coatings with improved adhesion might produce greater suppression of sinuous flow and further reductions in cutting force.

The observed folding in metal resembles patterns created during the flow of highly viscous fluids such as honey and liquid polymers. It also is similar to fold patterns observed in natural rock formations. The researchers borrowed methods from the geophysics community in their analysis of fold properties in metals.

Although the team made the discovery in metal-cutting experiments, Chandrasekar said understanding sinuous flow and its suppression and control could lead to new opportunities in a range of manufacturing applications that involve metal deformation such as in machining, stamping, forging and sheet-metal processes.

Another possibility is the design of new materials for energy absorption - by deliberately enhancing sinuous flow - for applications in armor, vehicles and structures.
Future research will include work to develop a model for sinuous flow, to learn more about the physical mechanisms in sinuous flow and its suppression and to investigate properties of coatings. The work was funded by

the National Science Foundation and conducted through Purdue's Center for Materials Processing and Tribology.

Writer: Emil Venere, 765-494-4709,

Sources: Srinivasan Chandrasekar, 765-494-3623,

Related websites:

Srinivasan Chandrasekar:

Center for Materials Processing and Tribology:


This image, at left, shows a previously unknown type of metal deformation - sinuous flow -in which metal is deformed into folds while it is being cut. New research findings, in graph at right, reveal the cutting force can be reduced 50 percent simply by painting metal with a standard marking ink, suggesting that not only can energy consumption be reduced by 50 percent but also that machining metals can be achieved faster and more efficiently, and with improved surface quality. (Purdue University School image/ Ho Yeung and Koushik Viswanathan) A publication-quality image is available at


Sinuous ow in metals

Ho Yeung1, Koushik Viswanathan1, W. Dale Compton1, and Srinivasan Chandrasekar1

1Center for Materials Processing and Tribology, Purdue University

Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick 'chip'. This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic ow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode -- sinuous ow. Using in situ imaging, we nd that chip formation occurs via large amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex uids. Our observations establish sinuous ow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous ow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material, before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect.

Note to Journalists: A copy of the research paper is available by contacting, 202-334-1310, or Emil Venere at Purdue, 765-494-4709, A video is available at

Purdue University

Related Lead Articles from Brightsurf:

Lead-free magnetic perovskites
Scientists at Linköping University, Sweden, working with the perovskite family of materials have taken a step forwards and developed an optoelectronic magnetic double perovskite.

Researchers devise new method to get the lead out
Researchers in the lab of Daniel Giammar, in McKelvey School of Engineering have devised a simple, quick and inexpensive way to quantify how much lead is trapped by a water filter.

Preventing lead poisoning at the source
Using a variety of public records, researchers from Case Western Reserve University examined every rental property in Cleveland from 2016-18 on factors related to the likelihood that the property could have lead-safety problems.

Silicones may lead to cell death
Silicone molecules from breast implants can initiate processes in human cells that lead to cell death.

Poor diet can lead to blindness
An extreme case of 'fussy' or 'picky' eating caused a young patient's blindness, according to a new case report published today [2 Sep 2019] in Annals of Internal Medicine.

What's more powerful, word-of-mouth or following someone else's lead?
Researchers from the University of Pittsburgh, UCLA and the University of Texas published new research in the INFORMS journal Marketing Science, that reveals the power of word-of-mouth in social learning, even when compared to the power of following the example of someone we trust or admire.

UTI discovery may lead to new treatments
Sufferers of recurring urinary tract infections (UTIs) could expect more effective treatments thanks to University of Queensland-led research.

Increasing frailty may lead to death
A new study published in Age and Ageing indicates that frail patients in any age group are more likely to die than those who are not frail.

Discovery could lead to munitions that go further, much faster
Researchers from the U.S. Army and top universities discovered a new way to get more energy out of energetic materials containing aluminum, common in battlefield systems, by igniting aluminum micron powders coated with graphene oxide.

Shorter sleep can lead to dehydration
Adults who sleep just six hours per night -- as opposed to eight -- may have a higher chance of being dehydrated, according to a study by Penn State.

Read More: Lead News and Lead Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to