Nav: Home

Mouse antibodies pinpoint Zika's weak spots

July 27, 2016

Antibodies that specifically protect against Zika infection have been identified in mice, report Washington University School of Medicine in St. Louis researchers on July 27 in Cell. This is the second publication in recent weeks (another paper showing human Zika antibodies appeared in Science on July 14, DOI: 10.1126/science.aaf8505) that explores the surfaces that the antibodies target on the virus. The information will help inform the development of vaccines, diagnostics, and antibody-based prophylactic and therapeutic agents.

"Using biophysical methods, we characterized a panel of Zika-specific antibodies and developed a correlation between the precise epitopes that are recognized and protection against the virus," says immunologist Daved Fremont, co-senior author on the paper. "We found that our most protective antibodies bind the same region of the Zika virus that we and others have revealed for Dengue and West Nile, hinting that the humoral immune response targets genetically distinct, but structurally similar regions across this family of viruses."

"We now have two groups that have come out with papers showing that antibodies that specifically recognize Zika virus can protect against infection in vivo," says infectious disease researcher Michael Diamond, the other co-author on the paper. "This is the first step toward optimizing current vaccine strategies and potentially developing antibody-based therapeutics as well as augmenting efforts for generating diagnostics that would specifically differentiate Zika viruses from other related flaviviruses."

Antibody tests for Zika can be unreliable because some Zika antibodies can cross-react with other flaviviruses, such as Dengue virus and West Nile virus. Laboratories must use more expensive nucleic-acid-based tests, which look for the presence of viral particles, in order to confirm Zika infection.

Fremont and Diamond's laboratory identified antibodies by infecting mice engineered to be susceptible to Zika (DOI: 10.1016/j.chom.2016.03.010) with the virus and collecting their antibody-producing B cells. The researchers then screened the antibodies against Zika surface proteins. Six candidate antibodies were found, and from these, four were able to effectively prevent or treat Zika infection in cells and in mice. Haiyan Zhao, first author and a postdoctoral researcher in Fremont's laboratory, took the lead on using X-ray crystallography to visualize the viral epitopes as well as undertook binding assays to characterize the antibodies.

"The other two families of epitopes that we uncovered in this study, cryo-electron microscopy models of the mature virus would tell you are never exposed to antibodies, so we call these cryptic epitopes," says Fremont, who has been collaborating with Diamond on flavivirus research since 2003. "These results shed light on some of the gymnastics that Zika viral particles probably go through during infection." Dengue virus is also known to have these unexplained cryptic epitopes.

The researchers next want to identify at which stages of pregnancy the Zika antibodies have the most protective effects against the virus. Although the antibodies were identified in mice, they can be humanized without much difficulty, they say. In Science on July 14, Davide Corti of Humabs BioMed SA and Federica Sallusto of the Institute for Research in Biomedicine in Bellinzona, Switzerland reported producing fully human antibodies that could neutralize the Zika virus in mouse models, work Diamond says is quite complementary to findings in the Cell paper.
This work was supported by grants from the National Institutes of Health and the Center for Structural Genomics of Infectious Diseases. Michael Diamond is a consultant for Inbios, Visterra, Sanofi, and Takeda Pharmaceuticals, is on the Scientific Advisory Boards of Moderna and OraGene, and is a recipient of research grants from Moderna, Sanofi, and Visterra.

Cell, Zhao and Fernandez et al.: "Structural basis of Zika virus specific antibody protection"

Cell (@CellCellPress), the flagship journal of Cell Press, is a bimonthly journal that publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. Visit: To receive Cell Press media alerts, contact

Cell Press

Related Antibodies Articles:

Ebola antibodies at work
Scientists in Israel and Germany show, on the molecular level, how an experimental vaccine offers long-term protection against the disease.
How new loops in DNA packaging help us make diverse antibodies
It's long been known that our immune cells mix and match bits of genetic code to make new kinds of antibodies to fight newly encountered threats.
Immunological discovery opens new possibilities for using antibodies
Researchers from the University of Turku have discovered a new route that transports subcutaneously administered antibodies into lymph nodes in just a few seconds.
Rheumatoid arthritic pain could be caused by antibodies
Antibodies that exist in the joints before the onset of rheumatoid arthritis can cause pain even in the absence of arthritis, researchers from Karolinska Institutet in Sweden report.
Humanization of antibodies targeting human herpesvirus 6B
A Japanese research group have succeeded in humanization of mouse antibodies that can neutralize the infection caused by human herpesvirus 6B.
More Antibodies News and Antibodies Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...