Nav: Home

Tuned gels reveal molecules that drive stem cell differentiation

July 27, 2016

By monitoring stem cell differentiation on gels that mimic the stiffness and nanofibrous structure of biological tissue, researchers have identified the specific molecules that stem cells use when selecting bone and cartilage fates. When fed to standard stem cell cultures, these molecules (mostly lipid and cholesterol metabolites) were then found to guide stem cells to generate desired cell types. The study, which shows how new biomaterials can take the guesswork out of identifying factors that drive stem cell differentiation, appears on July 27 in Chem -- Cell Press's first physical science journal.

Researchers have known that the stiffness of a hydrogel surface can instruct stem cells to differentiate--for example, a rigid surface can result in bone cell formation, whereas soft surfaces give rise to neuron-like cells. With this information, supramolecular chemist Rein Ulijn of the City University of New York and the University of Strathclyde developed an approach to producing gels on the basis of combining small building-block molecules that spontaneously form a network of nanosized fibers, the concentration of which could be tuned to adjust the stiffness of the resulting gel. By mimicking the stiffness of bone (40 kilopascal) or cartilage (15 kilopascal), the gel causes stem cells applied to its surface to differentiate.

"This paper is a great example of how chemistry can help make step changes in biology," says Matthew Dalby, a professor of cell engineering at the University of Glasgow and co-senior author on the study with Ulijn. "As a biologist, I needed simple yet tunable cell-culture gels that would give me a defined system to study metabolites in the laboratory. Rein had developed the chemistry to allow this to happen."

Existing gels for cell culture are often animal derived, which can affect the reproducibility of results or, if synthetic, require coatings or coupling of cell-adhesive ligands. Ulijn's gel is composed of two simple synthetic peptide derivatives: (1) a component that binds to copies of itself with high directional preference, resulting in the spontaneous formation of nanoscale fibers when the molecules are dissolved in water, and (2) a surfactant-like molecule that associates with the fiber surface and presents simple, cell-compatible chemical groups. The components are held together by relatively weak and reversible interactions -- e.g., hydrogen bonding and aromatic stacking. (Variants of the gels developed in this study are available through a spinout company, Biogelx, Ltd., where Ulijn serves as Chief Scientific Officer.)

"We wanted a platform that provides nanofiber morphology and as-simple-as-possible chemistry and tunable stiffness to serve as a blank-slate background so that we could focus on changes in stem cell metabolism," says Ulijn, who directs the new nanoscience initiative at the Advanced Science Research Center, part of the City University of New York. "Matt and his team performed metabolomics analysis to find out how the key metabolites within a stem cell are used up during the differentiation process."

Although transcription factors are often the ingredients scientists use to induce stem cell fate, Dalby and Ulijn hypothesize that certain metabolites "fuel" the pathways that result in variable concentrations of transcription factors that drive these changes. One metabolite featured in the study is cholesterol sulfate, which was found to be used up during osteogenesis on a rigid matrix and in turn could be used to convert stem cells into bone-like cells in a dish. In the paper, the researchers illustrate how it could influence proteins that activate the transcription factors that transcribe major bone-related genes to drive bone formation--showing a link between metabolite usage and activation of transcription factors.

A caveat of the study is that the gel does not exactly replicate the microenvironment inside the body, so it's not clear whether stem cells behave differently on the designed gel surfaces. Although the full list of metabolites derived from the analysis is preliminary, "it could certainly point researchers in the right direction," Ulijn says.

"Our ambition is to simplify drug discovery -- by using the cell's own metabolites as drug candidates," Dalby says. "For example, cholesterol sulfate, which our rigid gel revealed as critical to bone cell differentiation, could be a safer solution (e.g., minimal off-target effects) for treating osteoporosis, spinal fusion, and other bone-related conditions. Presently, growth factors are used, but these can lead to unwanted collateral damage, and government agencies in the UK and US have published warnings against their use.

"That you can use simple metabolites like cholesterol sulfate, which is readily available, to induce differentiation is in my view very powerful if you think about this as a potential drug candidate," Ulijn adds. "These metabolites are inherently biocompatible, so the hurdles to approval are going to be much lower compared to those associated with completely new chemical entities."

The researchers aim to further explore how metabolites may be used as therapeutic compounds by observing their depletion during cellular change in relation to diseased states. They also plan to evolve the chemistry behind the materials so that it may be possible for gels to better mimic more complex cellular environments beyond the control of stiffness alone, as well as investigate how dynamic changes in matrix properties -- a hallmark of the stem cell niche -- can be mimicked in the laboratory.
This work was funded by the UK Biotechnology and Biological Sciences Research Council with additional support from the UK Engineering and Physical Sciences Research Council, the California Institute for Regenerative Medicine, the British Heart Foundation, the PBC Foundation, and the Israeli Council for Higher Education.

Chem, Alakpa et al.: "Tunable Supramolecular Hydrogels for Selection of Lineage Guiding Metabolites in Stem Cell Cultures"

Chem (@Chem_CP) is the first physical science journal published by Cell Press. The sister journal to Cell, Chem provides a home for seminal and insightful research and showcases how fundamental studies in chemistry and its sub-disciplines may help in finding potential solutions to the global challenges of tomorrow. Visit To receive Cell Press media alerts, contact

Cell Press

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...