Nav: Home

Towards smarter crop plants to feed the world

July 27, 2016

Plant scientists at Lancaster University, with support from the University of Illinois, have made an important advance in understanding the natural diversity of a key plant enzyme which could help us address the looming threat of global food security.

Rubisco is the central enzyme responsible for photosynthesis in plants, it enables them to absorb carbon from the atmosphere, which they depend upon to live and grow. But until now, the extent of natural diversity of Rubisco across plant species was relatively unknown.

In the most comprehensive study of its kind to date, the Lancaster University-led research team has discovered that some of the species they looked at had more effective and high-performing Rubisco than several of the major crops species, like wheat and soybean. Their work was supported by RIPE (Realizing Increased Photosynthetic Efficiency), a research grant led by Illinois at the Carl R. Woese Institute for Genomic Biology.

As part of the study, researchers from Lancaster University and Liverpool John Moores University looked at 75 plant species, including grasses, wild rice, melons and beans from across the world and assessed the ability of their Rubiscos to assimilate CO2 at a range of different temperatures - to replicate the effects of a changing climate.

Publishing in the journal Plant Physiology, researchers say they were excited by the range of performance of Rubiscos isolated from the different land plants.

Some of these Rubisco enzymes have superior characteristics that now offer the possibility of engineering plants which grow more quickly, and with less need for additional fertilizers. As part of the consortium RIPE, the Lancaster researchers and their collaborators are working toward improving crops, including rice, cassava, soybean and cowpea.

Douglas Orr, a research associate at Lancaster University, said: "The plants we examined came from a range of environments, from sub-Saharan Africa to temperate regions of Europe and Asia, and northern Australia."

"We also analyzed the effect of temperature on Rubisco biochemistry in all these species, to explore how different Rubiscos respond to changing temperatures, which can help us understand how the changes occurring in our climate may impact plant growth."

"These discoveries are an important advance for RIPE," said RIPE Director Stephen Long, Professor of Plant Biology and Crop Sciences at the University of Illinois. "They show the existence of forms of this key enzyme that introduced into crops would increase their productivity and efficiency of both nitrogen and water use, and forms that will function well at future increased global temperatures."

Elizabete Carmo-Silva, a lecturer at Lancaster University, said: "This large dataset has shed new light on the variation present in nature. We were able to identify a number of 'superior' Rubiscos which modeling suggests could improve photosynthetic efficiency in crops such as wheat and soybean. This provides important information in our efforts to produce more sustainable crops."

Professor Martin Parry, Lancaster University, said: "This new information gives us the opportunity to tailor the photosynthetic performance of crops for specific environments."
-end-
The study 'Surveying Rubisco diversity and temperature response to improve crop photosynthetic efficiency' is available online (doi: http://dx.doi.org/10.1104/pp.16.00750). RIPE is funded by the Bill & Melinda Gates Foundation. The Lancaster Environment Centre RIPE team is led by Professor Martin Parry and the overall RIPE project is led by Professor Steve Long (University of Illinois, who recently also joined Lancaster University).

Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

Related Soybean Articles:

Researchers find significant economic losses due to soybean diseases
Economic losses due to soybean diseases in the United States from 1996 to 2016 amounted to more than $95 billion, according to a team of researchers in Penn State's College of Agricultural Sciences who examined the long-term impact of soybean diseases on production in the U.S.
Soybean Innovation Lab provides knowledge that assists soybean production in Africa
The Soybean Innovation Lab (SIL), housed in the College of Agricultural, Consumer and Environmental Sciences at the University of Illinois, is funded by USAID's Feed the Future initiative to help bring research-based innovation and technology to develop soybean production in Sub-Saharan Africa.
Fungus application thwarts major soybean pest, study finds
The soybean cyst nematode sucks the nutrients out of soybean roots, causing more than $1 billion in soybean yield losses in the U.S. each year.
Organic soybean producers can be competitive using little or no tillage
Organic soybean producers using no-till and reduced-tillage production methods that incorporate cover crops -- strategies that protect soil health and water quality -- can achieve similar yields at competitive costs compared to tillage-based production.
Genes controlling mycorrhizal colonization discovered in soybean
Like most plants, soybeans pair up with soil fungi in a symbiotic mycorrhizal relationship.
Complete genome of devastating soybean pathogen assembled
An international research collaboration has successfully assembled the complete genome sequence of the pathogen that causes the devastating disease Asian soybean rust.
Chinese scientists update soybean genome to a golden reference
Soybean is one of the most important crops worldwide. A high-quality reference genome will facilitate its functional analysis and molecular breeding.
Illinois study identifies a key to soybean cyst nematode growth
The soybean cyst nematode, one of the crop's most destructive pests, isn't like most of its wormy relatives.
A new released Chinese soybean genome facilitates soybean elite cultivar improvement
Soybean was domesticated in China and has become one of the most important oilseed crops.
Australian vine can boost soybean yield, study says
Growing in its native Australia, the unobtrusive perennial vine Glycine tomentella could easily be overlooked.
More Soybean News and Soybean Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.