Nav: Home

Transformations to granular zircon revealed: Meteor Crater, Arizona

July 27, 2016

Boulder, Colo., USA - Having been reported in lunar samples returned by Apollo astronauts, meteorites, impact glass, and at a number of meteorite craters on Earth, granular zircon is the most unusual and enigmatic type of zircon known. The mechanisms and transformations that form this distinctive granular zircon have, until now, remained speculative because it has not been produced in shock experiments.

A new study of granular zircon from Meteor Crater in Arizona, USA, by Aaron J. Cavosie and colleagues, uses electron backscatter diffraction to unravel specific mineral transformations and pressure-temperature conditions involved in its genesis.

Mapping the orientation of recrystallized zircon domains (neoblasts) shows that making granular zircon first involves forming twins, followed by transformation to the high-pressure mineral reidite, all at extreme pressure and temperature, far beyond those found in Earth's crust. While at high temperature, the grains recrystallize to form the distinctive small neoblasts that define granular zircon, and then partially react to zirconia if high temperature persists.

These results, which include the first new shocked mineral discovery at Meteor Crater in more than 50 years, provide new insights into extreme impact conditions at inaccessible sites where granular zircon occurs, such as the surface of the Moon and collisions among asteroids.


Transformations to granular zircon revealed: Twinning, reidite, and ZrO2 in shocked zircon from Meteor Crater (Arizona, USA)

Aaron J. Cavosie et al., TIGeR (The Institute for Geoscience Research), Department of Applied Geology, Curtin University, Perth, WA 6102, Australia. This article is OPEN ACCESS online at

GEOLOGY articles are online Representatives of the media may obtain complimentary articles by contacting Kea Giles at the e-mail address above. Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to GEOLOGY in articles published. Non-media requests for articles may be directed to GSA Sales and Service,

Other recently posted GEOLOGY articles are highlighted below:Persistent slip rate discrepancies in the eastern California (USA) shear zone

Eileen L. Evans et al., U.S. Geological Survey, 345 Middlefield Road, MS 977, Menlo Park, California 94025, USA. This article is online at

Taking advantage of a new approach for estimating fault slip rates from GPS observations, Eileen Evans and colleagues address a long-standing puzzle in the eastern California shear zone, where slip rates estimated from GPS measurements often disagree with those estimated from geologic observations. To model slip rates, they consider many potentially active faults, and find that eastern California shear zone deformation is well described by 10 microplates. Discrepancies with geologic slip rates appear to be persistent, especially on the Calico and Garlock faults. This result may be inconsistent with the presence of distributed off-fault deformation in the eastern California shear zone. Understanding localized discrepancies on the Calico and Garlock faults may hold important clues for understanding how fault systems deform and evolve in time, and for earthquake hazard in eastern California.

Subduction zone interaction: Controls on arcuate belts

Ágnes Király et al., Laboratory of Experimental Tectonics, Department of Sciences, Università degli Studi Roma Tre, Largo San Leonardo Murialdo 1, 00146 Rome, Italy. This article is online at

Subduction is a unique process on Earth, where a heavy plate sinks into the mantle along the boundary of two plates. Subduction zones can occur close to each other creating unique and very complex geological settings. This study first addresses how can two neighboring subduction zone interact with each other. We used 3D numerical modeling with the aid of a high-performance supercomputer to understand the interaction between the two oppositely subducting plates. The subduction zones strongly affect each other if plate edges are at distances <~600 km. In this case the mantle flow around the subducting plates combines into a single, large convective cell, trench migration slows down, and stress increases progressively with decreasing slab distance. This study can help to improve our understanding of tectonically and geologically complex areas such as the Mediterranean area between Africa and Europe or the complex boundary between Eurasia and the Pacific plate.

The climate archive dune-sedimentary record of annual wind intensity

Sebastian Lindhorst, University of Hamburg, Center for Earth System Research; and Christian Betzler Sustainability (CEN), Institute for Geology, Bundesstrasse 55, 20146 Hamburg, Germany. This article is online at

The understanding of the long-term wind-field variability is most relevant for calibrating climate models and for predicting the socio-economic consequences of regional climate shifts. Continuous, instrumental-based weather observations reach back only less than two centuries; the geological record, however, contains an archive of past wind activity that is basically unread. For the first time, we show that eolian dunes bear a high-resolution record of past wind strength. Grain size variations of dune sands through time are compared with historical wind observations and are exemplarily used to reconstruct 20th century wind-intensity in the southern North Sea area, beyond the time covered by historical wind observations. The approach can be used in both recent and fossil dune systems to gain long-term data series of wind intensity in areas and for time periods lacking an instrumental record. Potential applications include the validation of climate models, the reconstruction of supra-regional wind systems and the monitoring of future shifts in the climate system.

Quartz-in-garnet inclusion barometry under fire: Reducing uncertainty from model estimates

Kyle T. Ashley et al., Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, 2275 Speedway Stop C9000, Austin, Texas 78712, USA. This article is online at

Kyle Ashley and colleagues conducted heating experiments on quartz inclusions under pressure within garnet from a variety of tectonic environments. Ashley et al. found that the pressure inside the inclusions increased during heating, as a result of the different responses to changing temperature and pressure of the inclusion versus host. The magnitude of the pressure increase was less than that calculated using a one-dimensional elastic model. The authors therefore derived a correction to the elastic model, which improves the precision of this barometer and allows better pressure determination for mineral growth.

Avulsion flow-path selection on rivers in foreland basins

Douglas A. Edmonds et al., Indiana University Department of Geological Sciences and Center for Geospatial Data Analysis, Bloomington, Indiana 47405, USA. This article is online at

Rivers are dynamic features that move, twist, and wiggle as they carry water and sediment from mountains to the coast. Possibly the most dramatic river movement is the avulsion, which is the wholesale abandonment of the present river course in favor of a new location on the adjacent floodplain. Understanding this process is critical because it causes widespread flooding and deposits huge volumes of sediment that are good reservoirs for oil and natural gas. The process of river avulsions is a bit mysterious because they usually occur every 500 to 1000 years making them hard to observe. To overcome this barrier we took advantage of the new cloud-computing platform developed by Google called Earth Engine. Google Earth Engine provides unmatched access to satellite imagery from which we searched and found 55 instances of river avulsions through S. America and India/Nepal. On each avulsion we measured key attributes of how the river moves and found predictable relationships. For instance, avulsions have a characteristic shape where for every 1 km of lateral movement 5 km of river in a downstream direction is abandoned. These results place important constraints on river avulsion size that could aid in hazard prediction and recovering oil and natural gas.

Geological Society of America

Related Subduction Articles:

SRL publishes focus section on Subduction Zone processes in the Americas
Researchers from around the globe share what they've learned from an unprecedented amount of data collected in the Latin American Subduction Zone over the past two decades.
What drives plate tectonics?
Scientists found ''switches'' between continental rupture, continental collision, and oceanic subduction initiation in the Tethyan evolution after a reappraisal of geological records from the surface and new global-scale geophysical images at depth.
Crack in Pacific seafloor caused volcanic chain to go dormant
University of Houston geologists have discovered that 50 million years ago a chain of volcanoes between Northeast Asia and Russia were forced into a period of dormancy that lasted for 10 million years.
How to interact between mantle and crustal components in the subduction zone?
Subduction process drives the differential evolution of the earth and realizes material cycle and energy exchange.
Study: Microbes could influence earth's geological processes as much as volcanoes
By acting as gatekeepers, microbes can affect geological processes that move carbon from the earth's surface into its deep interior, according to a study published in Nature and coauthored by microbiologists at the University of Tennessee, Knoxville.
The solid Earth breathes
The solid Earth breathes as volcanoes ''exhale'' gases like carbon dioxide (CO2) -- which are essential in regulating global climate -- while carbon ultimately from CO2 returns into the deep Earth when oceanic tectonic plates are forced to descend into the mantle at subduction zones.
Tide gauges capture tremor episodes in cascadian subduction zone
Hourly water level records collected from tide gauges can be used to measure land uplift caused by episodic tremor and slip of slow earthquakes in the Cascadia Subduction Zone, according to a new report in the Bulletin of the Seismological Society of America.
Scientists reconstruct ancient lost plates under Andes mountains
In a paper published in the journal Nature, geologists from the University of Houston demonstrate the reconstruction of the subduction of the Nazca Ocean plate, the remnants of which are currently found down to 1,500 kilometers, or about 900 miles, below the Earth's surface.
New study reveals connection between climate, life and the movement of continents
A new study by The University of Texas at Austin has demonstrated a possible link between life on Earth and the movement of continents.
Upper Cretaceous trench deposits of the Neo-Tethyan subduction zone
Exposed along the southern side of the Yarlung Zangbo suture, the Jiachala Formation is a key unit to decipher the history of convergence and subsequent collision between the India and the Asia plates.
More Subduction News and Subduction Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab