Nav: Home

Avoiding stumbles, from spacewalks to sidewalks

July 27, 2016

Video of astronauts tripping over moon rocks can make for entertaining Internet viewing, but falls in space can jeopardize astronauts' missions and even their lives. Getting to one's feet in a bulky, pressurized spacesuit can consume time and precious oxygen reserves, and falls increase the risk that the suit will be punctured.

Most falls happen because spacesuits limit astronauts' ability to both see and feel the terrain around them, so researchers from MIT's Department of Aeronautics and Astronautics (AeroAstro) and the Charles Stark Draper Laboratory in Cambridge, Massachusetts are developing a new space boot with built-in sensors and tiny "haptic" motors, whose vibrations can guide the wearer around or over obstacles.

At the International Conference on Human-Computer Interaction, the researchers presented the results of a preliminary study designed to determine what types of stimuli, administered to what parts of the foot, could provide the best navigation cues. On the basis of that study, they're planning further trials using a prototype of the boot.

The work could also have applications in the design of navigation systems for the visually impaired. The development of such systems has been hampered by a lack of efficient and reliable means of communicating spatial information to users.

"A lot of students in my lab are looking at this question of how you map wearable-sensor information to a visual display, or a tactile display, or an auditory display, in a way that can be understood by a nonexpert in sensor technologies," says Leia Stirling, an assistant professor of AeroAstro and an associate faculty member at MIT's Institute for Medical Engineering and Science, whose group led the work. "This initial pilot study allowed Alison [Gibson, a graduate student in AeroAstro and first author on the paper] to learn about how she could create a language for that mapping." Gibson and Stirling are joined on the paper by Andrea Webb, a psychophysiologist at Draper.

What, where, and when

For the pilot study, Gibson developed a device that spaced six haptic motors around each of a subject's feet -- one motor each at the heel, big toe, and instep, and three motors along the outer edge of the foot. The intensity of the motors' vibrations could be varied continuously between minimum and maximum settings.

A subject placed his or her feet in the device while seated before a computer. Software asked the subjects to indicate when they felt vibrations and at what locations on the foot. Tests were conducted under two conditions. In the first, the subjects focused on the stimuli to their feet. In the second, they were distracted by a simple cognitive test: The software would flash a random number on the screen, and the subject would count upward from that number by threes. The vibration of one of the motors would interrupt the counting, and the subject would report on the sensation.

Each subject was asked to report on more than 500 individual stimuli, divided between the two conditions.

The researchers had envisioned that variations in the intensity of the motors' vibrations could indicate distance to obstacles, as measured by sensors built into the boot. But they found that when distracted by cognitive tests, subjects had difficulty identifying steady increases in intensity. And even when they were attending to the stimuli, the subjects still had difficulty identifying decreases in intensity.

Subjects also had difficulty distinguishing between the locations of stimuli on the outer edge of the foot. Strangely, in 20 percent of cases, distributed across all study participants, subjects were entirely unable to discern low-intensity stimuli to the middle location on the outer edge of the right foot.

Boot-building

On the basis of the study results, Gibson is developing a boot with motors at only three locations: at the toe, at the heel, and toward the front of the outside of the foot -- away from the middle location where stimuli sometimes didn't register.

Stimuli will not be varied continuously, but they will jump from low to high intensity when the wearer is at risk of colliding with an obstacle. The high-intensity stimuli will also be pulsed, to help distinguish them from the low-intensity ones.

In principle, the motor at the side of the foot could help guide the user around obstacles, but the first trial of the boot will concentrate entirely on the problem of stepping over obstacles of different heights. The researchers will also be evaluating the haptic signals in conjunction with, and separately from, visual signals, to determine the optimal method of conveying spatial information.
-end-


Massachusetts Institute of Technology

Related Visually Impaired Articles:

New technique visually depicts how cancer cells grow and spread in colon tissue
Duke Cancer Institute researchers have observed how stem cell mutations quietly arise and spread throughout a widening field of the colon until they eventually predominate and become a malignancy.
New tool makes web browsing easier for the visually impaired
Researchers have developed a new voice assistant that allows people with visual impairments to get web content as quickly and as effortlessly as possible from smart speakers and similar devices.
Music develops the spoken language of the hearing-impaired
Finnish researchers have compiled guidelines for international use for utilising music to support the development of spoken language.
Scientists identify a novel neural circuit mediating visually evoked innate defensive responses
Prof. WANG Liping and his colleagues ZHOU Zheng and LIU Xuemei at the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences revealed that the VTA (ventral tegmental area) GABAergic neural circuit mediates visually evoked innate defensive responses.
Music supports the auditory skills of hearing-impaired children
Researchers at University of Helsinki, Finland, and University College London have found evidence that children with hearing impairment and cochlear implants can benefit from hobbies involving music and especially singing.
Alcohol-impaired driving and drinking at private residences
Although drunk driving prevention and enforcement programs often focus on people who drink at bars and restaurants, drinking at home is strongly associated with driving after drinking and impaired driving, and may account for about a third of all drink driving events, according to a new study from the Prevention Research Center at the Pacific Institute for Research and Evaluation.
Counting (on) sheep? Promising gene therapy for visually impaired sheep now safe for human trials
A promising gene therapy for visually impaired sheep is now safe for human trials.
Macaws may communicate visually with blushing, ruffled feathers
Parrots -- highly intelligent and highly verbal -- may also ruffle their head feathers and blush to communicate visually, according to a new study published Aug.
Screening for impaired vision in older adults: New Canadian guideline
A new Canadian guideline for impaired vision in older adults recommends against primary care screening of older adults not reporting concerns about their vision.
Impaired brain pathways may cause attention problems after stroke
Damage to some of the pathways that carry information throughout the brain may be responsible for attention deficit in patients who have had a subcortical stroke in the brain's right hemisphere, according to a new study.
More Visually Impaired News and Visually Impaired Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab