Nav: Home

Scientists change properties of zeolites to improve hemodialysis

July 27, 2016

Scientists of Tomsk State University are working on changing physicochemical properties of zeolites using thermal and mechanical treatment. Based on the results of this research the scientists will be able to create a new material for a portable device for hemodialysis.

The scientists examined synthetic zeolite powder manufactured by SAPO-34 and natural zeolite of Tokay deposits (Hungary)

Synthetic powder was processed in a ball mill. Spin rate was 150 rotations per minute, processing time varied between 1 and 96 hours. Prior and after the processing the powder underwent thermal treatment. As a result material's specific surface area shrank from 506 m2/g to 102 m2/g (after 96-hour-long mechanical activation and a 1000Co annealing).

Natural zeolite of Tokay deposits underwent mechanical activation in a ball mill during 1-600 minutes. As a result of the activation mineral composition of zeolite changed: smectite, clinoptilolite, calcite, and cristobalite contents decreased several times while quartz and orthoclase contents increased. Specific surface area increased.

Natural zeolites are hard alumosilicates, that is why finding the most appropriate chopping technology is important to increase specific surface area, -says Alexander Buzimov, M.A. student in the faculty of Physics and Engineering. -Changing the specific surface area using mechanical treatment is aimed at changing properties of zeolites.

When they will have learnt to control zeolite's properties, the scientists plan to combine the mineral with nanoceramics which is manufactured by the scientists of the Institute of Strength Physics and Materials Science Siberian Branch of Russian Academy of Sciences and Tomsk State University, and thus produce a new gradient material. Thus, manufactured composite sieve will become the main part of the portable device for hemodialysis.

High-porous ceramics with desired pore size ranging from nano to macro is already produced by the scientists of Tomsk State University, Institute of Strength Physics and Materials Science Siberian Branch of Russian Academy of Sciences, Fraunhofer ICT (Germany), and University of Miskolc (Hungary). With these universities TSU has long-term agreements. The team includes both experienced scientists and students, - says Sergey Kulkov, professor of TSU.

Zeolite with high specific surface area provides effective moisture absorption. The device will be connected to a shunt, which is implanted under the skin of the patient. The blood will circulate through the composite sieve and will be cleaned.

The scientists hope to get the new material in a year, whereas the first device will be created in two years.

"Main advantage of this device is its portability. Nowadays, some analogs of traditional devices for hemodialysis are available, but all of them require the procedure to be performed in a hospital, so people are bound to their place of residence. With the new device, patients will be able to go even on a long journey. Hemodialysis can be then done at home and in an emergency situation," said Alexander Buzimov.
The project is carried out by The Institute of Strength Physics and Materials Science of the Russian Academy of Sciences, faculty of Physics and Engineering of Tomsk State University, Fraunhofer ICT (Germany), and University of Miskolc (Hungary).

National Research Tomsk State University

Related Physics Articles:

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.
Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Physics at the edge
In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures.
Using physics to print living tissue
3D printers can be used to make a variety of useful objects by building up a shape, layer by layer.
When the physics say 'don't follow your nose'
Engineers at Duke University are developing a smart robotic system for sniffing out pollution hotspots and sources of toxic leaks.
The coming of age of plasma physics
The story of the generation of physicists involved in the development of a sustainable energy source, controlled fusion, using a method called magnetic confinement.
Physics: Not everything is where it seems to be
Scientists at TU Wien, the University of Innsbruck and the ÖAW have for the first time demonstrated a wave effect that can lead to measurement errors in the optical position estimation of objects.
'Fudge factors' in physics?
What if your theory to model and predict the electronic structure of atoms isn't accounting for dispersion energy?
More Physics News and Physics Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab