Nav: Home

Dragon ants are coming: New 'Game of Thrones' species identified

July 27, 2016

The dragons from 'Game of Thrones' have come to life in insect form. New ant species that appear dragon-like due to their large and distinctive spines were recently found in the tropical rainforests of Papua New Guinea. Although they lack fire-breathing capabilities, the unique, spiny characteristics of the ants reminded the scientists who discovered them of the mythical dragons from the fantasy series and inspired them to name the ants after the 'Game of Thrones' dragons.

The researchers, Dr. Georg Fischer, Dr. Eli Sarnat, and Prof. Evan Economo from the Okinawa Institute of Science and Technology Graduate University (OIST), used cutting-edge 3D-imaging technology to help identify and document several new ant species in two different papers published in PLOS ONE.

The process of identifying, documenting, and naming new species, "taxonomy" is one of the oldest and most basic tasks in biology. Traditionally, new species are described with photographs, drawings, and verbal descriptions. In this study, the authors used new 3D imaging technology called X-Ray microtomography, which is similar to CT scans used in hospitals, only at a much higher resolution suitable for smaller objects, such as an ant.

"This is one of the first studies in ant taxonomy to use micro-CT," said Economo, head of OIST's Biodiversity and Biocomplexity Unit. "While this method is gaining popularity in different scientific fields, it is rare to use it in this way."

Once an ant is scanned using this method, it becomes a virtual specimen that "lives" in 3D; it can then be dissected, archived, and shared with other scientists around the world.

"If you are working in the bush in Africa and find an ant that you want to identify, it is really difficult to fly all the way to a museum in Europe or the U.S. to see collections of already known species," Fischer, co-author and postdoctoral scholar in OIST's Biodiversity and Biocomplexity unit said. "This way you can download the virtual ant, make measurements, and compare it to the specimen you are trying to identify."

This is almost the same as having the physical specimen in front of you and "in some ways it is better than the real thing," Economo added. "Because you can virtually dissect the specimen and examine internal structure on your computer."

The researchers used 3D imaging together with more traditional techniques, to describe two groups of ant species, one from Papua New Guinea and the other from Fiji. The team then created 3D galleries of each species, both new and previously known, which should be especially useful for people looking to identify and differentiate ant specimens.

The researchers also took advantage of these new 3D imaging capabilities to look inside the spines of the major worker ants for clues to their function. While the most obvious function of the spines is for defence against predators, the researchers additionally found that the spines were filled with muscle, which may make the ants stronger and more robust relative to non-spiny ants.

The integration of X-ray micro-CT and 3D imaging is a modern and tech-savvy take on the ancient art of taxonomy; and the continuous advance of modern technology provides new and exciting opportunities to improve even the oldest of disciplines.

"Taxonomy is fundamental to all other biological sciences, because it allows us to organize the information we discover about living things, but too often it is seen as boring or old-school," Economo said. "These new technologies can revolutionize the way we discover, document, and share information about new species, which is disruptive in an exciting way."
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Biodiversity Articles:

Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.
Mapping global biodiversity change
A new study, published in Science, which focuses on mapping biodiversity change in marine and land ecosystems shows that loss of biodiversity is most prevalent in the tropic, with changes in marine ecosystems outpacing those on land.
What if we paid countries to protect biodiversity?
Researchers from Sweden, Germany, Brazil and the USA have developed a financial mechanism to support the protection of the world's natural heritage.
Grassland biodiversity is blowing in the wind
Temperate grasslands are the most endangered but least protected ecosystems on Earth.
The loss of biodiversity comes at a price
A University of Cordoba research team ran the numbers on the impact of forest fires on emblematic species using the fires in Spain's Doñana National Park and Segura mountains in 2017 as examples
Biodiversity and carbon: perfect together
Biodiversity conservation is often considered to be a co-benefit of protecting carbon sinks such as intact forests to help mitigate climate change.
The last chance for Madagascar's biodiversity
A group of scientists from Madagascar, UK, Australia, USA and Finland have recommended actions the government of Madagascar's recently elected president, Andry Rajoelina should take to turn around the precipitous decline of biodiversity and help put Madagascar on a trajectory towards sustainable growth.
Biodiversity draws the ecotourism crowd
Nature -- if you support it, ecotourists will come. Managed wisely, both can win.
Biodiversity for the birds
Can't a bird get some biodiversity around here? The landscaping choices homeowners make can lead to reduced bird populations, thanks to the elimination of native plants and the accidental creation of food deserts.
Biodiversity can also destabilize ecosystems
According to the prevailing opinion, species-rich ecosystems are more stable against environmental disruptions such as drought, hot spells or pesticides.
More Biodiversity News and Biodiversity Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab