Nav: Home

Watering solar cells makes them grow ... in power!

July 27, 2016

Perovskite solar cells are the rising star in the photovoltaic landscape. Since their invention, less than ten years ago, their efficiency has doubled twice and it is now over 22% - an astonishing result in the renewable energy sector. Taking the name 'perovskite' from the light-harvesting layer that characterizes them, these solar cells are lighter, cheaper, and more flexible than the traditional crystalline silicon-based cells.

Perovskite solar cells are usually exposed to ambient air for several hours after fabrication. This procedure increases their efficiency, even if the reason behind the phenomenon was unclear. The scientific explanation of this practice has now been discovered by researchers from the Energy Materials and Surface Sciences Unit (EMSS) at the Okinawa Institute of Science and Technology Graduate University (OIST) led by Prof Yabing Qi. Their results are published in Advanced Materials Interfaces.

"It's intriguing: why do we need ambient air to enhance the effectiveness of perovskite solar cells?" Zafer Hawash, first author of the study and an OIST PhD student, commented. "Which component of the ambient air is linked to this phenomenon?" Starting from these questions, the researchers focused their attention on the top layer of the solar cells.

The choice was logical, because even if perovskite solar cell contains several layers - all of which may play a role in the cell efficiency - the top-most layer is the one in direct contact with ambient air. Thus, that is the layer most likely affected by the external environment. The layer is called 'hole transport layer', and it has a dopant, which is a substance that enhances the electrical conductivity of the material. "It is known that the dopant of the hole transport layer plays a key role in perovskite solar cells' performance," Hawash said. "But it was not clear how."

The scientists performed controlled exposure of the hole transport layer to environmental gasses, focusing on oxygen, nitrogen, and moisture - water that is in a gas state. Then, they checked the electrical properties of the hole transport layer, using a variety of methods, to see if and how the inside of the transport layer changed. "What we found is that oxygen and nitrogen do not have any role in the redistribution of the dopants," Hawash explained. "But in the case of moisture, the solar cells' efficiency increases. This is the discovery: moisture is the air component that causes the redistribution of the dopant across the material, and thus the enhancement of the electric properties of the solar cells."

The scientists explain this phenomenon with the structure of the transport layer, which has many pinholes that allow the passage of gasses between the ambient and the underneath material. The dopant in the transport layer is a salt - Lithium TFSI. Being a salt, the dopant has a hygroscopic nature: it absorbs water. When the solar cells are exposed to moisture, the water absorbed by the transport layer causes the dopant to redistribute. However, long time exposure to moisture has a detrimental effect on the solar cells.

During their experiments, the researchers were also able to document the role of oxygen in the solar cells' performance. "Oxygen enhances the electrical conductivity of the transport layer as well, but this effect does not last long," Hawash commented. "But with the right amount of exposure to moisture, the electric proprieties are irreversibly enhanced."

Exposing the device to moisture after fabrication is then the most effective way to enhance the solar cells' performance. Counterintuitively, then, water is what you need to have a perovskite solar cell that works properly. This finding is of high importance for the perovskite solar cells' future, as it finally explains a common practice whose effectiveness was mostly anecdotic, and thus could now lead the way to further improvement in the perovskite solar cells' performance.
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Solar Cells Articles:

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.
Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.
Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
Mapping the energetic landscape of solar cells
A new spectroscopic method now makes it possible to measure and visualize the energetic landscape inside solar cells based on organic materials.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
A good first step toward nontoxic solar cells
A team of engineers at Washington University in St. Louis has found what they believe is a more stable, less toxic semiconductor for solar applications, using a novel double mineral discovered through data analytics and quantum-mechanical calculations.
Organic solar cells will last 10 years in space
Scientists from the Skoltech Center for Energy Science and Technology, the Institute for Problems of Chemical Physics of RAS, and the Department of Chemistry of MSU presented solar cells based on conjugated polymers and fullerene derivatives, that demonstrated record-high radiation stability and withstand gamma radiation of >6,000 Gy raising hopes for their stable operation on the near-earth orbit during 10 years or even longer.
Next-gen solar cells spin in new direction
A nanomaterial made from phosphorus, known as phosphorene, is shaping up as a key ingredient for more sustainable and efficient next-generation perovskite solar cells.
Caffeine gives solar cells an energy boost
Scientists from the University of California, Los Angeles (UCLA) and Solargiga Energy in China have discovered that caffeine can help make a promising alternative to traditional solar cells more efficient at converting light to electricity.
More Solar Cells News and Solar Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab