Nav: Home

Discovery of new Hepatitis C virus mechanism

July 27, 2016

Researchers at Osaka University, Japan uncovered the mechanisms that suppress the propagation of the hepatitis C virus (HCV) with the potential of improving pathological liver conditions. Using model mice, they confirmed that when a certain enzyme is inhibited, HCV particle production is reduced leading to an improvement of pathological liver conditions. They thereby identified a new drug target for the development of new HCV drugs.

About 200 million people around the world are infected with the HCV virus. HCV infection may cause fatty liver, hepatic fibrosis and liver cancer. In Japan, the HCV virus is the main cause for viral liver cancer, constituting 70% of liver cancers. Although the recent development of effective drugs targeting HCV replicative enzymes has enabled the elimination of HCV, challenges remain including the emergence of resistant viruses and the development of liver cancer after virus elimination. So far it was known that the cleavage of the HCV core protein by the enzyme signal-peptide peptidase (SPP) in infected host cells played an important role in the formation of viral particles and the development of pathological liver conditions. However, the details of this mechanism were not understood.

A research group led by Toru Okamoto, assistant professor and Yoshiharu Matsuura, professor at Research Institute for Microbial Diseases, Osaka University has now discovered that when the enzyme SPP is inhibited, HCV particle production is reduced resulting in an improvement of pathological liver conditions.

The researchers found a chemical compound that inhibits the SPP enzyme in the y-secretase inhibitor which is currently in the development process for Alzheimer's disease treatment. They also discovered that the immature core proteins which are not cleaved by SPP are recognized by the enzyme TRC8 and quickly degraded. If this degradation process is suppressed, cellular damage is strongly induced by endoplasmic reticulum stress (ER stress). The endoplasmic reticulum is central to protein biosynthesis and in a state of ER stress, the proteins synthesizing there are unable to fold up correctly thereby causing cell damage. This degradation process can therefore be considered as a quality control mechanism for new proteins. When the researchers administered the SPP inhibitor to model mice, HCV particle production was significantly reduced, improving HVC pathologic conditions such as insulin resistance and fatty liver.

The results of this study suggest the development of SPP inhibitors as a new hepatitis C drug. In addition, the observed protein quality control mechanism via SPP/TRC8 is thought to be related to other diseases as well thereby being potentially useful for the drug development for a variety of diseases.
-end-
This research was featured in the electronic version of Nature Communications on Wednesday, May 4, 2016 (British Time).

Osaka University

Related Hepatitis Articles:

Hepatitis C increasing among pregnant women
Hepatitis C infections among pregnant women nearly doubled from 2009-2014, likely a consequence of the country's increasing opioid epidemic that is disproportionately affecting rural areas of states including Tennessee and West Virginia.
WHO's Global Hepatitis Report sets baseline to eliminate viral hepatitis by 2030
The World Hepatitis Alliance today welcomes the publication of the first-ever Global Hepatitis Report by the World Health Organization (WHO), which includes new data on the prevalence and global burden of viral hepatitis.
Elimination of viral hepatitis by 2030: What's needed and how do we get there?
This first European Action Plan provides an important driver to aid countries in their fight against viral hepatitis, to which ECDC had the opportunity to contribute directly.
Discovery of new Hepatitis C virus mechanism
Researchers at Osaka University, Japan uncovered the mechanisms that suppress the propagation of the hepatitis C virus with the potential of improving pathological liver conditions.
Is Europe ready to eliminate viral hepatitis?
Currently, Europe records around 57,000 newly diagnosed acute and chronic cases of hepatitis B and C each year.
Why baby boomers need a hepatitis C screening
Hepatitis C affects a disproportionate amount of older Americans, born between 1945 and 1965.
Counterattack of the hepatitis B virus
The hepatitis B virus (HBV) infects liver cells. Drugs are available to treat HBV, but they rarely cure the infection, and so the virus typically returns after the treatment ends.
Hepatitis C tied to increased risk of Parkinson's
The hepatitis C virus may be associated with an increased risk of developing Parkinson's disease, according to a study published in the Dec.
The hepatitis A virus is of animal origin
The hepatitis A virus can trigger acute liver inflammation which generally has a mild course in small children but which can become dangerous in adults.
Modeling the helicase to understand hepatitis C
NS3 is an enzyme specific to the hepatitis C virus.

Related Hepatitis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".