Nav: Home

Star's intense radiation beams whip neighboring red dwarf

July 27, 2016

  • 'Stellar lighthouse' lashes its neighbour with a beam of particles and radiation every two minutes
  • Never before observed behaviour researched by team led by the University of Warwick
  • Research published in the journal Nature.
New research from the University of Warwick finds a new type of exotic binary star, in which a rapidly-spinning burnt-out stellar remnant called a white dwarf sweeps powerful beams of particles and radiation over its nearby companion star, causing it to pulse across almost the entire electromagnetic spectrum from the ultraviolet to radio.

The research, A radio pulsing white dwarf binary star, is published in the journal Nature.

In May last year, a group of amateur astronomers from Germany, Belgium and the UK came across a star unlike any they had ever encountered. Follow-up from a combined team of amateur and professional astronomers, led by the University of Warwick, on a multitude of telescopes from the ground and space, revealed the nature of the system.

The star, AR Scorpii or AR Sco for short, lies in the constellation Scorpius, 380 light-years from Earth, a close neighbour in astronomical terms. The white dwarf in AR Sco is the size of Earth but 200,000 times more massive, and is in a 3.6 hour orbit with a cool star one third the mass of the Sun.

Highly magnetic and spinning on a period just shy of two minutes, AR Sco produces lighthouse-like beams of radiation and particles, which lash across the face of the cool star, a red dwarf, and across our line-of-sight causing the entire system to brighten and fade dramatically twice every two minutes. This powerful light house effect accelerates electrons in the atmosphere of the red dwarf to close to the speed of light, an effect never observed before in similar types of binary stars.

Commenting the discovery lead researcher, Professor Tom Marsh of the University of Warwick's Astrophysics Group said: "AR Sco was discovered over 40 years ago, but its true nature was unsuspected until we observed it last May with a high-speed astronomical camera called ULTRACAM on the William Herschel Telescope. We realised we were seeing something extraordinary within minutes of starting to observe it."

Most of the radiation seen from the system is emitted by charged particles (electrons) moving at near the speed of light. The electrons are accelerated by intense electric fields caused by the rapidly-spinning magnetic field of the white dwarf, but their primary location within the atmosphere of the cool star is a major mystery of the system.

Co-author Professor Boris Gänsicke, also from the University of Warwick, commented that although there's a history of studying this type of star, the new discovery is thrilling: "We've known pulsing neutron stars for nearly fifty years, and some theories predicted white dwarfs could show similar behaviour. It's very exciting that we have discovered such a system, and it has been a fantastic example of amateur astronomers and academics working together."

The observations underlying this research were carried out on: the William Herschel and Isaac Newton Telescope's of the Isaac Newton Group of telescopes sited on the Spanish island of La Palma in the Canaries; the European Southern Observatory's Very Large Telescope located at Cerro Paranal, Chile; the Australia Telescope Compact Array at the Paul Wild Observatory, Narrabri, Australia; the ESA/NASA Hubble Space Telescope; NASA's Swift satellite.

University of Warwick

Related Radiation Articles:

Cloudy with a chance of radiation: NASA studies simulated radiation
NASA's Human Research Program (HRP) is simulating space radiation on Earth following upgrades to the NASA Space Radiation Laboratory (NSRL) at the US Department of Energy's Brookhaven National Laboratory.
Visualizing nuclear radiation
Extraordinary decontamination efforts are underway in areas affected by the 2011 nuclear accidents in Japan.
Measuring radiation damage on the fly
Researchers at MIT and elsewhere have found a new way to measure radiation damage in materials, quickly, cheaply and continuously, using transient grating spectroscopy.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Novel advancements in radiation tolerance of HEMTs
When it comes to putting technology in space, size and mass are prime considerations.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Graphene is both transparent and opaque to radiation
A microchip that filters out unwanted radiation with the help of graphene has been developed by scientists from the EPFL and tested by researchers of the University of Geneva (UNIGE).
Radiation causes blindness in wild animals in Chernobyl
This year marks 30 years since the Chernobyl nuclear accident.
No proof that radiation from X rays and CT scans causes cancer
The widespread belief that radiation from X rays, CT scans and other medical imaging can cause cancer is based on an unproven, decades-old theoretical model, according to a study published in the American Journal of Clinical Oncology.
Some radiation okay for expectant mother and fetus
During pregnancy, approximately 5 to 8 percent of women sustain traumatic injuries, including fractures and muscle tears.

Related Radiation Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.