Nav: Home

New approach for environmental test on livestock drugs

July 27, 2016

Livestock medications can impair beneficial organisms that break down dung. Too high a dosage of ivermectin, a common drug against parasites, harms coprophilous organisms, for instance. The toxicity of new livestock medications therefore needs to be verified in ecotoxicological tests with individual animal species such as the common yellow dung fly, the barn fly or a dung beetle. This involves determining the lethal dose leading to the death of half the maggots (LD50 test). However, sensitivity to toxic substances is known to vary significantly even among closely related coprophilous organisms, which begs the question as to how representative the reaction of any individual animal species actually is in such laboratory tests. After all, there is a high risk that more sensitive species will continue to be harmed by the substance, jeopardizing key ecosystem functions in the long run.

An international research group including UZH evolutionary biologist Wolf Blanckenhorn recently proposed extending the testing scheme to a representative selection of all organisms that break down dung, ideally in their natural environment. The scientists now presented a successful and more comprehensive higher-tier ecotoxicological field test. Their study provides important insights into minimizing the risks of drug residues in nature.

Earthworms compensate for loss of coprophilous insects

For their feasibility study, the scientists worked on cattle pastures in the Canadian Prairie and the agricultural landscapes of southern France, the Netherlands and Switzerland - four locations with very different climatic conditions. On these pastures, they distributed dung pats with different concentrations of ivermectin. "As expected, the overall number and diversity of dung beetles, dung flies and parasitoid wasps decreased as the ivermectin concentration increased," explains Blanckenhorn. However, a number of species also proved to be resistant: earthworms and springtails living in the ground underneath the cowpats were not notably affected, and a parallel test ultimately revealed that dung degradation was not significantly impaired. "Evidently, beneficial organisms not affected as much by the drug, such as earthworms, were apparently able to compensate for the loss of other organisms," sums up Blanckenhorn.

A basis for decision makers and licensing authorities

Despite diverse environmental conditions and methodological details, the results were very similar and reproducible in all four habitats. "Our field approach was therefore a success and in principle can be recommended. The regulation authorities responsible, such as the European Medicines Agency EMA, now have to decide whether this more conclusive yet more complex test should be required in the future," says Blanckenhorn. The amount of effort involved in determining the numerous dung organisms is tremendous and impossible without expert biological knowledge. "Classifying species via so-called DNA barcoding, based on each organism's unique genetic fingerprint, is possible in principle and will probably be more cost-effective in the future. However, this approach requires the establishment of a complete database for coprophilous organisms, which does not yet exist," concludes the scientist.
-end-
Literature:

Kevin D. Floate, Wolf U. Blanckenhorn. Special Section: Non-target Structural and Functional Effects of Ivermectin Residues in Cattle Dung on Pasture - Guidance for Researchers and Regulators. Environmental Toxicology and Chemistry. Volume 35, Issue 8. July 21, 2016. DOI: 10.1002/etc.3549

Ivermectin

Scientists discovered and refined ivermectin in Japan in the mid-1970s, eventually winning the Nobel Prize in Medicine in 2015. The drug has been used to cure river blindness, scabies and roundworms in the gut of humans, as well as parasites in livestock and pets.

Chemically ivermectin belongs to the avermectins, which generally interfere with ion channel transport through the cell membrane and thus the molting of pest organisms. If the ivermectin dosage is too high and excreted in the feces of treated livestock, the drug also kills beneficial organisms that break down dung. This has a negative impact on the functioning of the entire ecosystem: in extreme cases, the dung is no longer degraded at all and the pasture cannot be used any further.

Contact:

Prof. Dr. Wolf U. Blanckenhorn

Department of Evolutionary Biology and Environmental Studies

University of Zurich
Phone: +44 7509 785930.

E-mail: wolf.blanckenhorn@ieu.uzh.ch

Media Relations

University of Zurich

Phone: +41 44 634 44 67

E-mail: mediarelations@kommunikation.uzh.ch

University of Zurich

Related Organisms Articles:

New NMR technique offers 'molecular window' into living organisms
NMR Technique developed at U of T Scarborough has potential for noninvasive disease diagnosis using current MRI technology.
Evolving 'lovesick' organisms found survival in sex
Being 'lovesick' takes on a whole new meaning in a new theory which answers the unsolved fundamental question: why do we have sex?
Micro-organisms will help African farmers: Soil microbes to the rescue
Sorghum is the fifth most important cereal in the world.
Decreasing antibiotic use can reduce transmission of multidrug-resistant organisms
Reducing antibiotic use in intensive care units by even small amounts can significantly decrease transmission of dangerous multidrug-resistant organisms, according to new research published online today in Infection Control & Hospital Epidemiology, the journal of the Society for Healthcare Epidemiology of America.
Miniature organisms in the sand play big role in our ocean
In the Journal of Experimental Marine Biology and Ecology, Jeroen Ingels, a researcher at the FSU Coastal and Marine Laboratory, explains that small organisms called meiofauna that live in the sediment provide essential services to human life such as food production and nutrient cycling.
Tiny organisms with a massive impact
Although diatoms are incredibly small, they have a significant impact on the dispersal of nutrients and trace elements in global marine waters.
A new path to fixing genes in living organisms
A gene-editing method shows promise for using targeted gene-replacement therapy in living organisms.
Mechanism of successful horizontal gene transfer between divergent organisms explained
University of Tsukuba-led researchers showed how a host's gene regulatory environment can facilitate the establishment of a gene newly arrived via horizontal transfer.
The effects of pesticides on soil organisms are complex
There are significant interactions between soil management factors, including pesticide application, with respect to effects on soil organisms.
The oceans are full of barriers for small organisms
Subtle and short-lived differences in ocean salinity or temperature function as physical barriers for phytoplankton, and result in a patchy distribution of the oceans' most important food resource.

Related Organisms Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.