How to build nanoelectronic devices atom by atom?

July 27, 2016

In the year 2015, Intel, Samsung and TSMC began to mass-market the 14nm technology called FinFETs. In the same year, IBM, working with Global Foundries, Samsung, SUNY, and various equipment suppliers, announced their success in fabricating 7nm devices. A 7nm silicon channel is about 50 atomic layers and these devices are truly atomic! It is clear that we have entered an era of atomic scale transistors. How do we model the carrier transport in such atomic scale devices?

One way is to improve existing device models by including more and more parameters. This is called the top-down approach. However, as device sizes shrink, the number of parameters grows rapidly, making the top-down approach more and more sophisticated and challenging. Most importantly, to continue Moore's law, electronic engineers are exploring new electronic materials and new operating mechanisms. These efforts are beyond the scope of well-established device models -- hence significant changes are necessary to the top-down approach.

An alternative way is called the bottom-up approach. The idea is to build up nanoelectronic devices atom by atom on a computer, and predict the transport behavior from first principles. By doing so, one is allowed to go inside atomic structures and see what happens from there. The elegance of the approach comes from its unification and generality. Everything comes out naturally from the very basic principles of quantum mechanics and nonequilibrium statistics. The bottom-up approach is complementary to the top-down approach, and is extremely useful for testing innovative ideas of future technologies.

In recent decades, several device simulation tools using the bottom-up approach have been developed in universities and software companies. Some examples are McDcal, Transiesta, Atomistic Tool Kit, Smeagol, NanoDcal, NanoDsim, OpenMX, GPAW and NEMO-5. These software tools are capable of predicting electric current flowing through a nanostructure. Essentially the input is the atomic coordinates and the output is the electric current. These software tools have been applied extensively to study emerging electronic materials and devices.

However, developing such a software tool is extremely difficult. It takes years-long experiences and requires knowledge of and techniques in condensed matter physics, computer science, electronic engineering, and applied mathematics. In a library, one can find books on density functional theory, books on quantum transport, books on computer programming, books on numerical algorithms, and books on device simulation. But one can hardly find a book integrating all these fields for the purpose of nanoelectronic device simulation.

Atomistic Simulation of Quantum Transport in Nanoelectronic Devices (With CD-ROM) fills the chasm. Authors Yu Zhu and Lei Liu have experience in both academic research and software development. Yu Zhu is the project manager of NanoDsim, and Lei Liu is the project manager of NanoDcal. The content of the book is based Zhu and Liu's combined R&D experiences of more than forty years.

In this book, the authors conduct an experiment and adopt a "paradigm" approach. Instead of organizing materials by fields, they focus on the development of one particular software tool called NanoDsim, and provide relevant knowledge and techniques whenever needed. The black of box of NanoDsim is opened, and the complete procedure from theoretical derivation, to numerical implementation, all the way to device simulation is illustrated. The affilicated source code of NanoDsim also provides an open platform for new researchers.

Atomistic Simulation of Quantum Transport in Nanoelectronic Devices (With CD-ROM) retails at major bookstores at US$145 / £104 for hardback, and US$68 / £49 for the paperback edition. More information on the book can be found at http://www.worldscientific.com/worldscibooks/10.1142/10072
-end-
About World Scientific Publishing Co.

World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research, professional and educational communities. The company publishes about 600 books annually and about 130 journals in various fields. World Scientific collaborates with prestigious organizations like the Nobel Foundation, US National Academies Press, as well as its subsidiary, the Imperial College Press, amongst others, to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit http://www.worldscientific.com. For more information, contact Amanda Yun at heyun@wspc.com.sg

World Scientific

Related Atom Articles from Brightsurf:

Single-atom alloy: Superb cocatalyst for photocatalysis
The surface charge state of co-catalyst plays an important role in photocatalysis.

Molecular swarm rearranges surface structures atom by atom
Researchers at the University of M√ľnster have now developed a molecular tool which makes it possible, at the atomic level, to change the structure of a metal surface.

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Atom-Billiards with X-Rays: a new Approach to look inside of Molecules
Since these early days of quantum mechanics, it is known that photons also possess momentum.

To make an atom-sized machine, you need a quantum mechanic
Here's a new chapter in the story of the miniaturisation of machines: researchers in a laboratory in Singapore have shown that a single atom can function as either an engine or a fridge.

'Tickling' an atom to investigate the behavior of materials
Scientists and engineers working at the frontier of nanotechnology face huge challenges.

An 'exceptionally stable' single-atom catalyst
Scientists at Tokyo Institute of Technology (Tokyo Tech) have shown that single platinum atoms trapped in C12A7 crystals act as a stable and effective catalyst for the hydrogenation of nitroarenes, an essential process in the production of many kinds of fine chemicals.

Laser-based prototype probes cold atom dynamics
In new work published in EPJ D, a team of physicists in France presents an innovative prototype for a new industrial laser system.

It takes two -- a two-atom catalyst, that is -- to make oxygen from water
The search for sustainable approaches to generating new fuels has brought scientists back to one of the most abundant materials on Earth -- reddish iron oxide in the form of hematite, also known as rust.

One-atom switch supercharges fluorescent dyes
A Rice lab develops a single-atom switch to turn fluorescent dyes used in biological imaging on and off at will.

Read More: Atom News and Atom Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.