Nav: Home

Errors made by 'DNA spellchecker' revealed as important cause of cancer

July 27, 2017

Cancer is mostly caused by changes in the DNA of our cells that occur during our lifetime rather than those that we inherit from our parents. Identifying the causes of these 'mutations' is a difficult challenge because many processes can result in an identical DNA sequence change in a genome. Researchers at the Centre for Genomic Regulation (CRG) in Barcelona, Spain, have now identified one of the important mechanisms that causes these mutations as mistakes made by a DNA 'spellchecker' that repairs damage in our genomes.

The researchers identified this process by studying clusters of mutations in more than a thousand tumor genomes, meaning that they hunted for mutations that occur close together in the same part of the genome, such that this is highly unlikely to have happened by chance. The goal was to get a better picture of the mutagenic factors that affect human cells and that might cause cancer.

"Clustered mutations are likely to be generated at the same moment in time, so by looking at several neighboring mutations at once, we can have a better understanding of what has damaged the DNA," says Fran Supek, first author of the study at the CRG and currently group leader and 'Ramon y Cajal' fellow at the Institute for Research in Biomedicine (IRB Barcelona). "Like when police study a pattern of recurrent crimes in order to find a serial killer, here we show that focusing on patterns of clustered mutations and using a large number of cancer genomes, we can identify the culprits that cause mutations in tumors," he explains.

By studying clusters, the scientists identified nine mutational signatures that were evident in more than 1,000 genomes of tumors from various organs. Their results, which will be published in Cell on 27th July, revealed new major mutation-causing processes, including an unusual case of DNA repair which should normally safeguard the genome from damage, but is sometimes subverted and starts introducing clustered mutations.

"Our work provides information about new biological mechanisms underlying some types of cancers. For example, the main oncogenes involved in melanoma are well-known, but it is not known what causes the exact mutations that activate these genes to cause cancer. While many mutations in melanoma are recognized to be a direct consequence of UV radiation, the origin of mutations affecting the most important oncogenes is still a mystery. We identified a mechanism that has the capacity to cause these oncogenic, cancer-driving mutations in melanoma," adds Supek.

One of these new mutational processes is highly unusual and it is most evident in active genes. These regions are usually protected by DNA repair mechanisms ¬¬- in other words, DNA repair is directed towards the places where it is needed most. "Our results suggest that exposure to carcinogens, such as high amounts of alcohol, can shift the balance of the DNA repair machinery from a high-fidelity mode to an error-prone mode, causing the mutation rates to shoot up in the most important bits of the genome," says Ben Lehner, ICREA research professor at the EMBL-CRG Systems Biology Research Unit and principal investigator of this study. "This error-prone repair generates a large number of mutations overall and is likely to be a major mutation source in human cells".

DNA repair is extremely important because our bodies are constantly renewing their cells which involves copying more than 2 meters of DNA and errors inevitably get introduced. Moreover, mutagens in the environment like sunlight and tobacco smoke damage DNA and this damage has to be corrected. DNA repair is normally exquisitely accurate, but some types of damage can only be corrected using lower-fidelity 'spellcheckers'. It is the mistakes made by one of these less accurate spellcheckers that cause many of the mutations seen in different types of tumors, including liver, colon, stomach, esophagus and lung cancer.

New evidence links high levels of alcohol, sunlight, and smoking to mutations

Alcohol is a well-known contributor to many types of cancer, but the reasons for this are surprisingly unclear. Supek and Lehner's work suggests that one effect of alcohol, when consumed in large amounts, is to increase the use of low-fidelity DNA repair, thereby increasing the mutation rate in the most important regions of the genome. This finding provides a first glimpse into one mechanism by which alcohol may contribute to cancer risk. High exposure to sunlight seems to have a similar consequence.

As another part of the study the CRG scientists also found that cigarette smoking is associated with several different kinds of clustered mutations, further revealing the details of how smoking results in horrific damage to our DNA.
-end-


Center for Genomic Regulation

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...