Nav: Home

Copper stearate proved to be promising for heavy oil oxidation

July 27, 2018

Copper salts have found place in many industries, from pharmaceutics to agriculture, but they are rarely seen in petrochemistry and petroleum extraction. But not for long, it seems, now that Kazan Federal University scientists showed that copper stearate can be a great catalyst for in-situ combustion and even improve oil quality under certain conditions.

As the authors explain, most of the existing oil oxidation catalysts are synthesized from transition metals. But their one setback is that they are not soluble in oil and therefore not distributed in its volume. Evidently, there is not much to expect from them as catalysts in that case. That's why the researchers are looking for other compounds with high solubility and tried copper stearate. Its effectiveness was tested through high-pressure differential scanning calorimetry (HP-DSC) and adiabatic reaction calorimetry (ARC). The results were then compared to the already studied nickel stearate, iron stearate, and copper oxide. Copper stearate showed good results - it enhances oxidation, reduces activation energy, induction time, and combustion temperature, and increases coke burning efficiency. Its activity spectrum was also studied.

Lab Head Mikhail Varfolomeev comments, "In-situ combustion comprises three stages: low-temperature burning, cracking and pyrolysis, and high-temperature burning. As the tests have shown, copper oxide only works during the latter two stages and is thus a heterogeneous catalyst which requires high temperatures to be activated. Conversely, copper stearate proved to be an excellent low-temperature homogeneous catalyst."

Furthermore, copper stearate then dissipates into nanoparticles of copper oxide, which activates later in the reaction. The catalytic effect is many times more pronounced than during the use of just copper oxide. The researchers link this phenomenon to the fact that copper stearate is oil-soluble and thus serves as a means of transport for copper oxide.

"Based on this experiment, we can firmly say that our catalyst works for both low-temperature and high-temperature oxidation," says paper co-author Yuan Chengdong. "It may also affect cracking and pyrolysis, but we cannot definitely determine that with our methods."

Thus, copper stearate demonstrated its capacity to be a trigger for in-situ combustion. It also is rather cheap and easily accessible, so, coupled with its catalytic effect, this compound promises to become one of the best options for in-situ combustion and underground refining.
-end-


Kazan Federal University

Related Copper Articles:

Copper boosts pig growth, and now we know why
Pigs have better feed conversion rates with copper in their diets, but until now, scientists didn't fully understand why.
Cancer cells spread using a copper-binding protein
Researchers at Chalmers University of Technology, Sweden, have shown that the Atox1 protein, found in breast cancer cells, participates in the process by which cancer cells metastasise.
Adding copper strengthens 3D-printed titanium
Successful trials of titanium-copper alloys for 3D printing could kickstart a new range of high-performance alloys for medical device, defence and aerospace applications.
Matrix could ensure vital copper supplies
Researchers have identified a matrix of risks that the mining industry must overcome to unlock vitally important copper reserves.
Do microbes control the formation of giant copper deposits?
One of the major issues when studying ore deposits formed in surficial or near-surface environments is the relationship between ore-forming processes and bacteria.
Copper compound as promising quantum computing unit
Chemists at Friedrich Schiller University in Jena (Germany) have now synthesised a molecule that can perform the function of a computing unit in a quantum computer.
Copper ions flow like liquid through crystalline structures
Materials scientists have sussed out the physical phenomenon underlying the promising electrical properties of a class of materials called superionic crystals through the investigation of CuCrSe2.
A copper bullet for tuberculosis
Tuberculosis is a sneaky disease, and the number one cause of death from infectious disease worldwide.
Copper stearate proved to be promising for heavy oil oxidation
Copper salts have found place in many industries, from pharmaceutics to agriculture, but they are rarely seen in petrochemistry and petroleum extraction.
Scientists fill in a piece of the copper transport puzzle
Researchers have identified the protein that carries copper into mitochondria, where copper is required for the functioning of the cell's energy conversion machinery.
More Copper News and Copper Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.