Nav: Home

"Inchworm" pattern of Indonesian earthquake rupture powered seismic "boom"

July 27, 2020

Tsukuba, Japan - Earthquakes are often imagined as originating from a single point where the seismic waves are strongest, the hypocenter underground or the epicenter at the Earth's surface, with seismic energy radiating outward in a circular pattern. But this simplified model fails to account for the complex geometry of the actual fault systems where earthquakes occur. The real situation may be much more complex--and more interesting. In some remarkable cases, a phenomenon called "supershear" rupture can occur, where the earthquake rupture propagates along the fault at a speed faster than the seismic waves themselves can travel--a process analogous to a sonic boom.

In a new study published in Earth and Planetary Science Letters, researchers at the University of Tsukuba investigated a case of supershear rupture, the 2018 Palu earthquake (moment magnitude: 7.6) in Sulawesi, Indonesia, and its relationship with the complex geometry of the fault system.

Study co-author Professor Yuji Yagi explains, "We used globally observed teleseismic wave data and performed finite-fault inversion to simultaneously resolve the spatiotemporal evolution of slip and the complex fault geometry."

The results of this analysis showed that the propagation of supershear rupture of the Palu-Koro fault southward from the earthquake's epicenter was sustained by a pattern of repeated delay and advancement of slip along the fault, associated with the fault system's complex geometry. Areas with particularly high slip rates, referred to as "slipping patches," were identified near the epicenter as well as 60, 100, and 135 km south of the epicenter. In addition, three distinct episodes of rupture after the process initiated were distinguished, with delays in the advancement of the slipping patches between them.

Tracing the surface rupture of the earthquake showed two major bends in the earthquake fault, 10-25 km south of the epicenter and 100-110 km south of the epicenter. Supershear rupture persisted along this geometrically complex fault.

As lead author Professor Ryo Okuwaki describes, "Our study shows that the geometric complexity of a fault can significantly influence the velocity of rupture propagation. Our model of the 2018 Palu earthquake shows a zigzag pattern of slip deceleration and acceleration associated with bends in the fault, which we have named inchworm-like slip evolution. We propose that the geometric complexity of a fault system can promote persistent supershear rupture, enhanced by repeated inchworm-like slip evolution."

These findings may have significant implications regarding assessment of future earthquake impacts and related disasters. For example, the authors suggest that the slipping patch they detected beneath Palu Bay may have contributed to generation of the 2018 Palu tsunami, which added to the devastation of the earthquake.
-end-


University of Tsukuba

Related Earthquake Articles:

Earthquake lightning: Mysterious luminescence phenomena
Photoemission induced by rock fracturing can occur as a result of landslides associated with earthquakes.
How earthquake swarms arise
A new fault simulator maps out how interactions between pressure, friction and fluids rising through a fault zone can lead to slow-motion quakes and seismic swarms.
Typhoon changed earthquake patterns
Intensive erosion can temporarily change the earthquake activity (seismicity) of a region significantly.
Cause of abnormal groundwater rise after large earthquake
Abnormal rises in groundwater levels after large earthquakes has been observed all over the world, but the cause has remained unknown due to a lack of comparative data before & after earthquakes.
New clues to deep earthquake mystery
A new understanding of our planet's deepest earthquakes could help unravel one of the most mysterious geophysical processes on Earth.
Fracking and earthquake risk
Earthquakes caused by hydraulic fracturing can damage property and endanger lives.
Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.
Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.
Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.
How fluid viscosity affects earthquake intensity
A young researcher at EPFL has demonstrated that the viscosity of fluids present in faults has a direct effect on the intensity of earthquakes.
More Earthquake News and Earthquake Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.