New study provides valuable historical dataset for Yellow River water management

July 27, 2020

The Yellow River (YR) is the fifth-longest and the most sediment-laden river in the world. Although the YR accounts for only 3% of China's water resources, it irrigates 13% of its cropland.

Since the 1960s, an increasing number of large-scale dams and reservoirs have been built in the main YR channel, and water consumption by agricultural irrigation along the YR middle course has risen sharply. In recent decades, YR runoff and sediment load have fallen sharply.

The earliest observational record of YR runoff began in 1919 at the Shanxian gauge station, which is too short to study centennial-scale variability. Researchers led by Prof. LIU Yu from the Institute of Earth Environment of the Chinese Academy of Sciences and their collaborators reconstructed natural runoff history for the middle reach of the YR from 1492 to 2013 CE to assess the effects of human activities.

The study was published in Proceedings of the National Academy of Sciences of the United States of America (PNAS) on July 20.

Tree rings, with the merits of accurate dating and annual resolution, have been widely used in runoff reconstruction worldwide. In this study, the researchers collected 31 moisture-sensitive tree-ring width chronologies, including 860 trees and 1707 cores, within the upper-middle YR basins.

They found that the YR runoff in 1781 is the highest, and prior to anthropogenic interference that started in the 1960s, the lowest natural runoff over the past 500 y occurred during 1926 to 1932 CE. These two extreme values could be regarded as a benchmark for future judicious planning of YR water allocation.

Since the late 1980s, the low observed YR runoff has exceeded the natural range of runoff variability, which is caused by the combination of decreasing precipitation and increasing water consumption by direct and indirect human activities, particularly agricultural irrigation.

"This reduced runoff has resulted in an estimated 58% reduction of the sediment load in the upper reach of the YR and 29% reduction in the middle reach," said Prof. LIU.

Human activities, mainly expansive agricultural irrigation in the upper course, have contributed to reduced runoff and sediment load in the upper-middle course of the YR. If these human activities continue to intensify, future YR runoff will be further reduced, and this will negatively impact agriculture, human lives, and socioeconomic development in the middle and lower basins of the YR.

To reduce the risk of recurring cutoff of stream flow in the YR lower basin, water should be allocated judiciously. Policies should balance water allocation among the needs of agriculture, industry and ecosystems.

In addition, the study also provides an important model of how to distinguish and quantify anthropogenic influence from natural variability in global change studies.
-end-


Chinese Academy of Sciences Headquarters

Related Agriculture Articles from Brightsurf:

Post-pandemic brave new world of agriculture
Recent events have shown how vulnerable the meat processing industry is to COVID-19.

Agriculture - a climate villain? Maybe not!
The UN's Intergovernmental Panel on Climate Change (IPCC) claims that agriculture is one of the main sources of greenhouse gases, and is thus by many observers considered as a climate villain.

Digital agriculture paves the road to agricultural sustainability
In a study published in Nature Sustainability, researchers outline how to develop a more sustainable land management system through data collection and stakeholder buy-in.

Comparisons of organic and conventional agriculture need to be better, say researchers
The environmental effects of agriculture and food are hotly debated.

EU agriculture not viable for the future
The current reform proposals of the EU Commission on the Common Agricultural Policy (CAP) are unlikely to improve environmental protection, say researchers led by the German Centre for Integrative Biodiversity Research (iDiv), the Helmholtz Centre for Environmental Research (UFZ) and the University of Göttingen in the journal Science.

Global agriculture: Impending threats to biodiversity
A new study compares the effects of expansion vs. intensification of cropland use on global agricultural markets and biodiversity, and finds that the expansion strategy poses a particularly serious threat to biodiversity in the tropics.

A new vision for genomics in animal agriculture
Iowa State University animal scientists helped to form a blueprint to guide the next decade of animal genomics research.

New pathways for sustainable agriculture
Diversity beats monotony: a colourful patchwork of small, differently used plots can bring advantages to agriculture and nature.

The future of agriculture is computerized
Researchers at the MIT Media Lab Open Agriculture Initiative have used computer algorithms to determine the optimal growing conditions to improve basil plants' taste by maximizing the concentration of flavorful molecules known as volatile compounds.

When yesterday's agriculture feeds today's water pollution
Water quality is threatened by a long history of fertilizer use on land, Canadian scientists find.

Read More: Agriculture News and Agriculture Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.