European maize highlights the hidden differences within a species

July 27, 2020

Maize (Zea mays ssp. mays) was initially domesticated by Native Americans over 10.000 years ago. Nowadays, America's "favourite corn" is cultivated throughout the world and is used in varying ways, ranging from animal feed to biofuel. Maize has been able to adapt to different climates and conditions around the world, indicating that the genetic variability between lines must be large. And when considering that maize also is one of the plants which can reproduce via self- as well as cross-pollination, it becomes evident that sequencing the genome of only one maize line is insufficient, when attempting to fully understand the genetics of maize. Instead, for genetically diverse crops, researchers aim towards establishing the species' pangenome - the entire sequence of all lines of a species.

Scientists from plant breeding and research institutions throughout Germany recently picked up this challenge in maize and published their contribution to the maize pangenome in the journal Nature Genetics.

Dent and flint corn are the two classes of maize with the greatest commercial importance. As such, it is unsurprising that the complete genome sequence of a dent maize line B73 was established as the go to reference for maize breeding and research. However, within their recent project, the researchers led by Dr. Klaus Haberer from the Helmholtz Center in Munich, concentrated on the investigation of four European flint lines. As Dr. Haberer let us know: "Whilst the dent line B73 is a high-quality reference sequence, very high diversity at the sequence level has been found between different maize lines. This indicates that the sequence of the line B73 captures only a portion of the maize pangenome."

Within their research, the scientists utilised a complementary approach which combined modern sequencing techniques and bioinformatics with cytogenetic technologies. Whilst the sequencing techniques delivered the main share of information on the maize genomes, cytogenetic methods such as FISH (Fluorescence in situ hybridization) facilitated the researchers to test for misinterpretations of the sequenced genomes at the chromosomal level. But more importantly, it enabled the scientists to spot differences between the maize lines by looking through the microscope.

Prof. Dr. Andreas Houben, who led the cytogenetic tests at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben, told us: "Flint and dent maize have a high similarity on the gene level. However, both maize types have a large number of non-coding sequences, for example, so-called knob repeats, which vary between different lines. We were able to show these differences on the chromosomal level."

The study of the flint lines is an important addition to the current maize pangenome. And maybe even more importantly, the findings show that while the overall conservation of the gene content within a species might be high, differences in the non-coding genome fraction exist. And these small differences help us to truly understand and utilize maize biology.

Leibniz Institute of Plant Genetics and Crop Plant Research

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to