Researchers Develop Fast Screening Method For Water Testing

July 27, 1998

ATHENS, Ohio -- A new technique that detects toxins in water in less than 10 minutes could lead to faster identification of harmful substances in the nation's water supplies, according to an Ohio University scientist who developed the method.

The technique applies a principle similar to that used in drug testing: samples are screened for the presence of a suspicious substance and only those that test positive are sent for further analysis.

Until now, there have been few screening methods for use by companies and environmental agencies charged with monitoring the nation's water supplies. Accurate water sampling of a large water system such as a river may require testing of as many as 100 samples from different locations in the river. Currently, each sample receives a full analysis, taking several hours per sample to complete.

"The problem with doing a full analysis on every sample is that you can spend hours analyzing a sample only to find out that it's below Environmental Protection Agency limits," said Anthony Andrews, an assistant professor of chemistry at Ohio University. "With our method, you won't get an exact result of the type or amount of contaminants in the water sample, but you'll know whether the sample is contaminated above or below EPA limits."

The method created by Andrews and former chemistry graduate student Glen Jackson can detect toxins at a level of just one-billionth of a gram per liter of water, well below current EPA standards, Andrews said.

The idea behind their technique may be simple, but the application is a bit complex. A fiber coated with a special chemical layer is dipped into a water sample. Any toxic molecules in the sample will be drawn to the chemical layer, preferring it over water. The molecule-covered fiber is placed in a gas chromatograph for separation. The injection port in the chromatograph is heated to about 250 degrees Celsius, which drives the molecules from the chemical layer on the fiber to another column where the molecules are separated.

Once separated, the toxic molecules are sent through a chamber filled with free electrons, which are quickly snapped up by the molecules. An electrode in a detection unit monitors the current produced by the electrons. The larger the change in current as electrons are grabbed, the higher the number of toxic molecules in the sample.

For their studies, the researchers screened water samples from the Hocking River in Athens in Southeastern Ohio for organochlorine pesticides such as DDT. Andrews said the process could be used to screen for any number of harmful substances, although some modifications would be required.

"The system we used could be constructed in any basic analytical laboratory and there's no reason to believe it couldn't be modified to detect any aqueous contaminant," Andrews said.

Now that he knows the technique can be used effectively, Andrews said he will try to make the process even faster, hopefully getting the run time down to five minutes or less.

The research was published in a recent issue of the journal Analyst. Andrews holds an appointment in the College of Arts and Sciences.

Written by Kelli Whitlock

Ohio University

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to