Brookhaven lab biophysicist F. William Studier wins R&D 100 award

July 28, 2004

Upton, NY -- F. William Studier, a biophysicist at the U.S. Department of Energy's Brookhaven National Laboratory, has won a 2004 R&D 100 award for developing a new process that simplifies the production of proteins in the widely used T7 gene expression system. The T7 expression system, developed and patented at Brookhaven Lab in the 1980s and 1990s, is used worldwide by academia and industry to produce specific proteins within bacterial cells.

R&D 100 Awards are given annually by R&D Magazine to the top 100 technological achievements of the year. Typically, these are innovations that transform basic science into useful products. The awards will be presented in Chicago on October 14.

Studier's new method simplifies the production of many proteins in parallel. Proteins do most of the work in biological systems. They digest food for energy; build biological structures, such as muscles and neurons; and regulate biological functioning, for example, by hormones. The Human Genome Project and other genome sequencing projects are revealing the full complement of human proteins and the proteins of many other organisms. Expression systems such as the T7 system allow biologists and medical scientists to obtain useful amounts of individual proteins for analyzing their structures and functions.

Commercially available through EMD Biosciences, Novagen brand, as the Overnight ExpressTM Autoinduction System, the new method relies on mechanisms by which bacteria sense the presence of nutrients in their surroundings and select which ones to use. An appropriate mixture of nutrients allows the bacteria to grow vigorously and then, at the appropriate stage of growth, switch automatically to producing the target protein without any intervention by the experimenter. The new method will be useful for biomedical research or for industrial production of proteins to use as enzymes, diagnostics, vaccines, therapeutics and targets for developing pharmaceuticals.

"The new autoinduction system is very convenient," Studier said. "Instead of spending much of the day monitoring the growth of many different cultures to get optimum conditions for producing proteins, we simply inoculate cultures late in the day, let autoinduction do the work for us, and collect our proteins the next morning. An added bonus is that we usually get much more protein."

Studier started his research on T7 -- a common bacteria-eating virus -- when he first joined Brookhaven Lab in 1964. "The T7 expression system came out of basic research," Studier said, "and the autoinduction system is also an application of basic knowledge. As so often happens, basic research led to useful applications in unexpected ways."
Studier's research is funded by the U.S. Department of Energy's Office of Biological and Environmental Research within the Office of Science, and by the Protein Structure Initiative of the National Institute of General Medical Sciences of the National Institutes of Health as part of the New York Structural Genomics Research Consortium.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more:

DOE/Brookhaven National Laboratory

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to