Nav: Home

Original cell type does not affect iPS cell differentiation to blood

July 28, 2016

Cell reprogramming involves making one cell type into another. In theory, all cells can be reprogrammed, but there is evidence that the original cell (founder cell) influences the type of cell to which it can be reprogrammed. In general, founder cells are easy to acquire from a donor and come in one of four types: fibroblasts, keratinocytes, peripheral and umbilical cord blood, and dental pulp cells. Labs from around the world have made iPS cell lines using different founder cells. The potential influence of founder cells is profound for regenerative medicine and other medical applications, since they suggest that the cell line should be selected based on the desired cell type.

Another factor that could also contribute to the efficiency of iPS cell line differentiation is the method with which the iPS cells were made. Many methods are used, but the most common, according to Associate Professor Yoshinori Yoshida at CiRA are "retrovirus, episomal plasmids and Sendai virus."

Blood describes a diverse group of cells that includes those that carry oxygen, heal wounds, and fight off infection, and the production of clinical grade blood has remained a major goal of reprogramming science. Some scientists have argued that to acquire hematopoietic cells, the best founder cells are coincidently hematopoietic cells. To investigate the contribution of founder cells in cell differentiation to hematopoietic cells, the Yoshida lab investigated an unprecedented number of iPS cell lines made using all of the above founder cells and reprogramming methods. .

Interestingly, the group found neither of these factors has a significant effect. Instead, they show the expression of certain genes and DNA methylations were better indicators of the efficiency at which a cell line could be differentiated into the hematopoietic lineage. "We found the IFG2 gene marks the beginning of reprogramming to hematopoietic cells", said Dr. Masatoshi Nishizawa, a hematologist in the Yoshida lab and first author of the new study. The researchers show that higher expression of the growth hormone IFG2, or insulin-like growth factor 2, is indicative of iPS cells initiating their conversion into hematopoietic cells. Even though IFG2 itself is not directly related to hematopoiesis, its uptake corresponded to an increase in the expression of genes that are.

Although IFG2 marked the beginnings of differentiation to hematopoietic lineage, the completion of differentiation was marked by the methylation profiles of the iPS cell DNA. "DNA methylation has an effect on a cell staying pluripotent or differentiating," explained Associate Professor Yoshida. The completion of differentiation correlated with less aberrant methylation during the reprogramming process. Blood founder cells showed a much lower propensity for aberrant methylation than did other founder cells, which could explain why in the past scientists attributed the founder cell to the effectiveness of differentiating iPS cells to the hematopoietic lineage.

These findings reveal molecular factors that can be used to evaluate the differentiation potential of different cell lines, which should expedite the progress of iPS cells to clinical use. Nishizawa expects this work to act as a basis to evaluate cell lines for the preparation of other cell types. "I think each cell type will have its own special patterns," he said.
-end-


Center for iPS Cell Research and Application - Kyoto University

Related Genes Articles:

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.
Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.
New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.
Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.
How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.
Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.
The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.
Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.
New genes on 'deteriorating' Y chromosome
Decoding Y chromosomes is difficult even with latest sequencing technologies.
Newly revealed autism-related genes include genes involved in cancer
Researchers in Italy have applied a computational technique that accounts for how genes interact, to find new networks of related genes that may be involved in autism spectrum disorder.
More Genes News and Genes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.