Nav: Home

Effects of past tropical deforestation will be felt for years to come

July 28, 2016

Even if people completely stopped converting tropical forests into farmland, the impacts of tropical deforestation would continue to be felt for many years to come. That's the conclusion of researchers reporting in the Cell Press journal Current Biology on July 28 who have used historical rates and patterns of tropical deforestation around the globe to estimate the resulting carbon emissions and species losses over time.

The findings highlight the importance of accounting for the time lag between deforestation and its environmental impacts in meeting conservation goals.

"We show that even if deforestation had completely halted in 2010, time lags ensured there would still be a carbon emissions debt equivalent to five to ten years of global deforestation and an extinction debt of more than 140 bird, mammal, and amphibian forest-specific species, which, if paid, would increase the number of 20th century extinctions in these groups by 120 percent," says Isabel Rosa (@isamdr86) of the Imperial College of London. "Given the magnitude of these debts, commitments to reduce emissions and biodiversity loss are unlikely to be realized without specific actions that directly address this damaging environmental legacy."

It takes time after trees are cut down before the wood and other plant matter left at the site fully decay, releasing carbon into the atmosphere. The resulting loss of habitat also leads to species losses, but those effects also tend to occur gradually.

In the new study, Rosa and her colleagues used a spatially explicit land cover change model to reconstruct the annual rates and spatial patterns of tropical deforestation from 1950 to 2009 in the Amazon, Congo Basin, and Southeast Asia. Using those patterns, they estimated the resulting gross vegetation carbon emissions and species losses.

The findings show that current emissions and species extinctions are mostly tied to past actions. As a result, the researchers explain, changes in annual deforestation rates will initially have a smaller than expected effect on annual carbon emissions. For example, they write, a 30 percent reduction in deforestation rates as seen in the Brazilian Amazon between 2005 and 2010 only cut carbon emissions over the same time period by 10 percent.

The researchers also show that modern deforestation has left us with an estimated extinction debt of 144 vertebrate species found only in tropical forests. That's 20 percent more than the number of extinctions known to have occurred in vertebrate groups in more than a century.

"I expected an increase in both carbon emissions and species extinctions debts, but the magnitude of these debts was surprising," Rosa says.

The findings show that reaching national and global emissions targets will be even more challenging than anticipated.

"We need to do more if we want to avoid paying these debts, thus preventing further loss of species and carbon emissions," Rosa said. "We need to preserve existing habitats, but also restore forests that have been degraded. Allowing the forest to regrow on areas that have been deforested helps by creating 'new' suitable areas for species to survive in while allowing some of this excess carbon to be stored back in the new trees rather than emitted into the atmosphere."

Rosa says she'll continue to pursue the use of their models to support better policy and management decisions.
-end-
The authors were supported by the European Research Council.

Current Biology, Rosa et al.: "The Environmental Legacy of Modern Tropical Deforestation" http://www.cell.com/current-biology/fulltext/S0960-9822(16)30625-X

Current Biology (@CurrentBiology), published by Cell Press, is a bimonthly journal that features papers across all areas of biology. Current Biology strives to foster communication across fields of biology, both by publishing important findings of general interest and through highly accessible front matter for non-specialists. Visit: http://www.cell.com/current-biology. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Deforestation Articles:

Amazon basin deforestation could disrupt distant rainforest by remote climate connection
The ongoing deforestation around the fringes of the Amazon may have serious consequences for the untouched deeper parts of the rainforest.
Amazon rainforest may be more resilient to deforestation than previously thought
Taking a fresh look at evidence from satellite data, and using the latest theories from complexity science, researchers at the University of Bristol have provided new evidence to show that the Amazon rainforest is not as fragile as previously thought.
Human-induced deforestation is causing an increase in malaria cases
A new study of 67 less-developed, malaria-endemic nations led by Lehigh University sociologist Dr.
'Narco-deforestation' study links loss of Central American tropical forests to cocaine
Central American tropical forests are beginning to disappear at an alarming rate, threatening the livelihood of indigenous peoples there and endangering some of the most biologically diverse ecosystems in North America.
Stanford study explores risk of deforestation as agriculture expands in Africa
Multinational companies are increasingly looking to Africa to expand production of in-demand commodity crops such as soy and oil palm.
Trade-offs between economic growth and deforestation
In many developing countries, economic growth and deforestation seem to go hand in hand -- but the links are not well understood.
Local government engagement, decentralized policies can help reduce deforestation
Empowering local governments with forestry decisions can help combat deforestation, but is most effective when local users are actively engaging with their representatives, according to a new University of Colorado Boulder-led study.
The fight against deforestation: Why are Congolese farmers clearing forest?
Only a small share of Congolese villagers is the driving force behind most of the deforestation.
Significant deforestation in Brazilian Amazon goes undetected, study finds
A new study finds that close to 9,000 square kilometers of Amazon forest was cleared from 2008 to 2012 without detection by the official government monitoring system.
Effects of past tropical deforestation will be felt for years to come
Even if people completely stopped converting tropical forests into farmland, the impacts of tropical deforestation would continue to be felt for many years to come.

Related Deforestation Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".