Nav: Home

The feel of food

July 28, 2016

Some people love avocados. Others hate them. For many of the latter, the fruit's texture is the source of their intense dislike. What gives?

Scientists do not have a clear understanding of the exact process by which food texture is sensed. But now, a new study by UC Santa Barbara biologist Craig Montell and his research team sheds light on how fruit flies "feel" foods based on two important textural features -- viscosity and hardness. Their findings appear in the journal Neuron.

"The food industry knows very well how important texture is to the appeal of foods," said Montell, the Robert and Patricia Duggan Chair in Mathematical, Life, and Physical Sciences in UCSB's Department of Molecular, Cellular, and Developmental Biology. "But despite the intense effort by many groups, including our own, in looking at how chemicals in foods affect the appeal, little has been done to understand how food texture is sensed."

Lead author Yali Zhang, a postdoctoral fellow in Montell's lab, was fascinated by how flies sense food. "That is why I decided to embark on this project, since very little is known about the identities of the cells and receptors in the fly 'tongue' that are responsible for detecting food mechanics."

Montell, Zhang and collaborators Tim Aikin and Zhengzheng Li discovered a single cell responsible for the insects' ability to distinguish food texture. Located in the fly's main taste organ, this neuron sends out many long, thin extensions, called dendrites, into the bases of taste hairs distributed on the surface of the tongue.

"When confocal microscopy showed me this beautiful multidendritic neuron in the fly tongue, I was thrilled because it had not been reported before," Zhang said. "I thought it must do something unique and important."

Zhang was right. When the bristles on the end of the fly tongue come in contact with food, they bend, and do so in proportion to the hardness of the food. As a result, this activates the food texture neuron to varying extents. Because the bristles are on the outside of the fly tongue, the insect can evaluate food texture before ingesting the food.

"Force activation of this food texture neuron tells the fly whether to eat or not to eat, depending on how hard or viscous the food is," Montell explained. "The fact that one neuron can control opposing behavioral responses is very different from sensation of the chemical properties of foods, where one set of neurons is stimulated by attractive foods, such as sugars, and a different set of neurons activated by bitter foods causes a stop-feeding signal."

The investigators also identified a cell surface protein called TMC -- transmembrane channel-like -- that is critically important in the food texture neuron. The TMC protein in flies is related to a human TMC essential for hearing. While hearing and food-texture sensation may seem unrelated, both are types of mechanosensation. Sound moves the eardrum, which activates cells inside the ear, while the movement of taste bristles by the physical properties of food activates a neuron in the fly tongue. This suggests that TMC may be an important part of a mechanosensor that functions both in humans and in flies, for hearing and taste, respectively.

"No one has actually shown that human or fly TMCs are sufficient to function as mechanosensors, due to challenges in expressing these proteins in artificial systems that would allow investigators to address this question," Montell explained. "While TMCs are candidate mechanosensors, they may not be acting alone.

"Identifying other proteins that play roles in food texture sensation in fruit flies is an important next step," he continued. "Because there are eight different types of TMCs in mice and humans, it would be fascinating to learn whether any of them has a role in food texture sensation in mammals."
-end-


University of California - Santa Barbara

Related Fruit Flies Articles:

Fruit flies respond to rapid changes in the visual environment
Researchers have discovered a mechanism employed by the fruit fly Drosophila melanogaster that broadens our understanding of visual perception.
How fruit flies flock together in orderly clusters
Opposing desires to congregate and maintain some personal space drive fruit flies to form orderly clusters, according to a study published today in eLife.
Fruit flies help in the development of personalized medicine
It is common knowledge that there is a connection between our genes and the risk of developing certain diseases.
Fruit flies' microbiomes shape their evolution
In just five generations, an altered microbiome can lead to genome-wide evolution in fruit flies, according to new research led researchers at the University of Pennsylvania.
Why fruit flies eat practically anything
Kyoto University researchers uncover why some organisms can eat anything -- 'generalists -- and others have strict diets -- 'specialists'.
Why so fly: MU scientists discover some fruit flies learn better than others
Fruit flies could one day provide new avenues to discover additional genes that contribute to a person's ability to learn and remember.
Fruit flies find their way by setting navigational goals
Navigating fruit flies do not have the luxury of GPS, but they do have a kind of neural compass.
Tolerance to stress is a 'trade-off' as fruit flies age
With the help of the common fruit fly (D. melanogaster), which ages quickly because it only lives about 60 days, FAU neuroscientists provide insights into healthy aging by investigating the effects of a foraging gene on age and stress tolerance.
Fat fruit flies: High-sugar diet deadens sweet tooth; promotes overeating, obesity in flies
Some research suggests that one reason people with obesity overeat is because they don't enjoy food -- especially sweets -- as much as lean people.
Fruit flies help to shed light on the evolution of metabolism
Researchers at the University of Helsinki have discovered that the ability to use sugar as food varies strongly between closely related fruit fly species.
More Fruit Flies News and Fruit Flies Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.