Nav: Home

No dream: Electric brain stimulation during sleep can boost memory

July 28, 2016

CHAPEL HILL, NC - When you sleep, your brain is busy storing and consolidating things you learned that day, stuff you'll need in your memory toolkit tomorrow, next week, or next year. For many people, especially those with neurological conditions, memory impairment can be a debilitating symptom that affects every-day life in profound ways. For the first time, UNC School of Medicine scientists report using transcranial alternating current stimulation, or tACS, to target a specific kind of brain activity during sleep and strengthen memory in healthy people.

The findings, published in the journal Current Biology, offer a non-invasive method to potentially help millions of people with conditions such as autism, Alzheimer's disease, schizophrenia, and major depressive disorder.

For years, researchers have recorded electrical brain activity that oscillates or alternates during sleep; they present as waves on an electroencephalogram (EEG). These waves are called sleep spindles, and scientists have suspected their involvement in cataloging and storing memories as we sleep.

"But we didn't know if sleep spindles enable or even cause memories to be stored and consolidated," said senior author Flavio Frohlich, PhD, assistant professor of psychiatry and member of the UNC Neuroscience Center. "They could've been merely byproducts of other brain processes that enabled what we learn to be stored as a memory. But our study shows that, indeed, the spindles are crucial for the process of creating memories we need for every-day life. And we can target them to enhance memory."

This marks the first time a research group has reported selectively targeting sleep spindles without also increasing other natural electrical brain activity during sleep. This has never been accomplished with tDCS - transcranial direct current stimulation - the much more popular cousin of tACS in which a constant stream of weak electrical current is applied to the scalp.

During Frohlich's study, 16 male participants underwent a screening night of sleep before completing two nights of sleep for the study.

Before going to sleep each night, all participants performed two common memory exercises - associative word-pairing tests and motor sequence tapping tasks, which involved repeatedly finger-tapping a specific sequence. During both study nights, each participant had electrodes placed at specific spots on their scalps. During sleep one of the nights, each person received tACS - an alternating current of weak electricity synchronized with the brain's natural sleep spindles. During sleep the other night, each person received sham stimulation as placebo.

Each morning, researchers had participants perform the same standard memory tests. Frohlich's team found no improvement in test scores for associative word-pairing but a significant improvement in the motor tasks when comparing the results between the stimulation and placebo night.

"This demonstrated a direct causal link between the electric activity pattern of sleep spindles and the process of motor memory consolidation." Frohlich said.

Caroline Lustenberger, PhD, first author and postdoctoral fellow in the Frohlich lab, said, "We're excited about this because we know sleep spindles, along with memory formation, are impaired in a number of disorders, such as schizophrenia and Alzheimer's. We hope that targeting these sleep spindles could be a new type of treatment for memory impairment and cognitive deficits."

Frohlich said, "The next step is to try the same intervention, the same type of non-invasive brain stimulation, in patients that have known deficits in these spindle activity patterns."

Frohlich's team previously used tACS to target the brain's natural alpha oscillations to boost creativity. This was a proof of concept. It showed it was possible to target these particular brain waves, which are prominent as we create ideas, daydream, or meditate. These waves are impaired in people with neurological and psychiatric illnesses, including depression.
-end-
Other authors of the Current Biology paper include Bradley Vaughn, MD, professor of neurology at UNC, Sankar Alagapan, PhD, a postdoctoral researcher in the Frohlich lab, Juliann Mellin, the research study coordinator for the Frohlich lab, and Michael Boyle, a graduate student in the UNC/NC State biomedical engineering department.

University of North Carolina Health Care

Related Memory Articles:

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.
VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.
The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.
How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
An immunological memory in the brain
Inflammatory reactions can change the brain's immune cells in the long term -- meaning that these cells have an 'immunological memory.' This memory may influence the progression of neurological disorders that occur later in life, and is therefore a previously unknown factor that could influence the severity of these diseases.
Anxiety can help your memory
Anxiety can help people to remember things, a study from the University of Waterloo has found.
Pores with a memory
Whether for separation processes, photovoltaics, catalysis, or electronics, porous polymer membranes are needed in many fields.
More Memory News and Memory Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.