Nav: Home

Earth's mantle appears to have a driving role in plate tectonics

July 28, 2016

EUGENE, Ore. -- July 28, 2016 -- Deep down below us is a tug of war moving at less than the speed of growing fingernails. Keeping your balance is not a concern, but how the movement happens has been debated among geologists.

New findings from under the Pacific Northwest Coast by University of Oregon and University of Washington scientists now suggest a solution to a mystery that surfaced when the theory of plate tectonics arose: Do the plates move the mantle, or does the mantle move the plates.

The separation of tectonic plates, the researchers proposed in a paper online ahead of print in the journal Nature Geoscience, is not simply dictating the flow of the gooey, lubricating molten material of the mantle. The mantle, they argue, is actually fighting back, flowing in a manner that drives a reorientation of the direction of the plates.

The new idea is based on seismic imaging of the Endeavor segment of the Juan de Fuca Plate in the Pacific Ocean off Washington and on data from previous research on similar ridges in the mid-Pacific and mid-Atlantic oceans.

"Comparing seismic measurements of the present mantle flow direction to the recent movements of tectonic plates, we find that the mantle is flowing in a direction that is ahead of recent changes in plate motion," said UO doctoral student Brandon P. VanderBeek, the paper's lead author. "This contradicts the traditional view that plates move the mantle."

While the new conclusion is based on a fraction of such sites under the world's oceans, a consistent pattern was present, VanderBeek said. At the three sites, the mantle's flow is rotated clockwise or counterclockwise rather than in the directions of the separating plates. The mantle's flow, the researchers concluded, may be responsible for past and possibly current changes in plate motion.

The research -- funded through National Science Foundation grants to the two institutions - also explored how the supply of magma varies under mid-ocean ridge volcanoes. The researchers conducted a seismic experiment to see how seismic waves moved through the shallow mantle below the Endeavor segment.

They found that the middle of the volcanic segment, where the seafloor is shallowest and the inferred volcanic activity greatest, the underlying mantle magma reservoir is relatively small. The ends, however, are much deeper with larger volumes of mantle magma pooling below them because there are no easy routes for it to travel through the material above it.

Traditional thinking had said there would be less magma under the deep ends of such segments, known as discontinuities.

"We found the opposite," VanderBeek said. "The biggest volumes of magma that we believe we have found are located beneath the deepest portions of the ridges, at the segment ends. Under the shallow centers, there is much less melt, about half as much, at this particular ridge that we investigated.

"Our idea is that the ultimate control on where you have magma beneath these mountain ranges is where you can and cannot take it out," he said. "At the ends, we think, the plate rips apart much more diffusely, so you are not creating pathways for magma to move, build mountains and allow for an eruption."
-end-
Co-authors of the paper were Douglas R. Toomey and Emilie Hooft, both of the UO's Department of Earth Sciences, and William S.D. Wilcock of the University of Washington's School of Oceanography.

The team's paper in Nature Geoscience was the focus of a companion "news & views" article titled "Delayed response to mantle pull."

Source: Brandon P. VanderBeek, doctoral student, UO Department of Earth Sciences, brandonv@uoregon.edu

Note: The UO is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. There also is video access to satellite uplink and audio access to an ISDN codec for broadcast-quality radio interviews.

Links:

Paper abstract: http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2745.html

Companion article: http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2746.html

VanderBeek webpage: http://geology.uoregon.edu/profile/brandonv/

Department of Earth Sciences: http://geology.uoregon.edu

University of Oregon

Related Magma Articles:

Volcanic crystals give a new view of magma
Volcanologists are gaining a new understanding of what's going on inside the magma reservoir that lies below an active volcano and they're finding a colder, more solid place than previously thought, according to new research published June 16 in the journal Science.
Thermal history of magma may help scientists hone in on volcanic eruption forecasts
A new study analyzed crystals of the mineral zircon -- zirconium silicate -- in magma from an eruption in the Taupo Volcanic Zone in New Zealand about 700 years ago to determine the magma's history.
Crystals once deep inside a volcano offer new view of magma, eruption timing
Volcanologists are gaining a better understanding of what's going on inside the magma reservoir that lies below New Zealand's Mount Tarawera volcano.
Forget the red hot blob: Volcanic zircon crystals give new view of magma
The classic red teardrop of magma underneath a volcano peak is too simplistic.
Deep magma reservoirs are key to volcanic 'super-eruptions', new research suggests
Large reservoirs of magma stored deep in the Earth's crust are key to producing some of the Earth's most powerful volcanic eruptions, new research has shown.
More Magma News and Magma Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.