Pitt and CMU receive $550,000 from NSF to design metal nanoparticles

July 28, 2016

Building upon their previous research, engineering faculty at the University of Pittsburgh Swanson School of Engineering and Carnegie Mellon University College of Engineering were awarded grants from the National Science Foundation to develop a novel computational framework that can custom design nanoparticles. In particular, the group is investigating bimetallic nanoparticles to more effectively control their adsorption properties for capturing carbon dioxide from the atmosphere.

The three-year grant, "Collaborative Research: Design of Optimal Bimetallic Nanoparticles," is led by Giannis Mpourmpakis, assistant professor of chemical and petroleum engineering at Pitt and group leader of the Computer-Aided Nano Energy Lab (C.A.N.E.LA.). Co-investigators are Götz Veser, professor of chemical and petroleum engineering at Pitt and associate director of the University's Center for Energy; and Chrysanthos Gounaris, assistant professor of chemical engineering at Carnegie Mellon University. The NSF Division of Civil, Mechanical and Manufacturing Innovation (CMMI) awarded $350,395 to Pitt and $199,605 to CMU to support computational research and targeted experiments.

"Bulk metals behave differently than their related nanoparticles, and our research has shown that bimetallic nanoparticles exhibit unique adsorption properties," Dr. Mpourmpakis explained. "Our previous research focused on the size and shape of gold nanoparticles toward their catalytic behavior, and now we are investigating copper nanoparticles and their ability to adsorb and activate carbon dioxide."

The researchers will utilize Pitt's Center for Simulation and Modeling to computationally identify bimetallic nanoparticles that maximize their performance for a given application. By optimizing the shape, size and metal composition of bimetallic nanoparticles through computer simulation, the researchers can reduce the need for expensive and time-consuming experiments in the lab, which are often based on extensive trial and error.

"Because we know that copper-based bimetallics effectively adsorb CO2, we can now fine-tune the nanoparticle morphology to maximize adsorption," Dr. Mpourmpakis said. "The benefit to the environment of being able to capture CO2 and potentially convert it to a useful chemical would be profound."
-end-


University of Pittsburgh

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.