Nav: Home

Pneumonia discovery may offer way to boost body's defenses

July 28, 2016

A molecule being targeted in cancer is also critical for the immune system's ability to battle pneumonia, researchers at the University of Virginia School of Medicine have determined. The finding may offer a new way for doctors to boost patients' ability to fight off the life-threatening infection as bacteria become more and more resistant to antibiotics.

"We're interested in seeing if there are things we an do to strengthen the natural defenses of the host to help them fight the infection more effectively," said Borna Mehrad, MBBS, of UVA's Division of Pulmonary and Critical Care Medicine. "Potentially this would be the sort of thing you could do in addition to antibiotics to help patients with severe infections."

Mysterious Role

Mehrad and his team determined that the lack of the cytokine M-CSF (short for macrophage-colony stimulating factor) in infected mice worsened the outcome of bacterial pneumonia: Not having the protein resulted in 10 times more bacteria in the lungs, 1,000 times more bacteria in the blood and spread the infection to the liver, resulting in increased deaths.

Clearly M-CSF has an important role in battling pneumonia, but what exactly does it do? "M-CSF has previously been shown to help make a type of immune cell, called monocytes, so my idea was that if you take it away, infected hosts just stop making monocytes and that's why they get sick," Mehrad said, "and it turned out that was completely wrong."

Instead, the researchers determined, M-CSF helped monocytes survive once they have arrived in the infected tissues. Mehrad credited a PhD student in his lab, Alexandra Bettina, with making key observations that completely changed the course of the research. "As I had expected, when we blocked the action of M-CSF ... we saw fewer monocytes in the lung. And I thought, well, there you have it," Mehrad said. "But what Alexandra did was look at the number of cells in the bone marrow, when they're made, and the blood, which is how they get to the lung. And she found that, in the absence of M-CSF, the number of monocytes in the bone marrow and blood was completely unaffected ... but was dramatically reduced in the lung."

That meant the original hypothesis was wrong. The cells were being made despite the lack of the cytokine; they just weren't surviving in the lungs to do their jobs. "To use an analogy, they are like soldiers mobilizing," Mehrad said. "They're being made in the right number, they're arriving in the right number, but when they get there, they're not very good soldiers."

But by knowing more about M-CSF, doctors one day may be able to make them very good soldiers indeed. "If you take M-CSF away, the infections get worse, so that raises two important questions about therapy: Would more be better? It may be that during infection, the body is making the right amount of M-CSF and if we add extra, it won't improve outcomes further," he said. "The second possibility is that there is room for improvement: in the fight between monocytes and the bacteria, M-CSF may make monocytes live longer and give them an edge. In addition, some people with weakened immunity might not make enough of M-CSF. If that's the case, you could augment that and improve their ability to fight the infection."
-end-
Findings Published Online

The discovery has been described in a paper published online by the Journal of Immunology. It was authored by Bettina, Zhimin Zhang, Kathryn Michels, R. Elaine Cagnina, Isaah S. Vincent, Marie D. Burdick, Alexandra Kadl and Mehrad.

University of Virginia Health System

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab