New studies reveal inside of central energy release region in solar eruption

July 28, 2020

Prof. LIN Jun from the Yunnan Observatories of Chinese Academy of Sciences, collaborating with Prof. CHEN Bin from the New Jersey Institute of Technology, conducted the radio observation of the magnetic field distribution and relativistic electron acceleration characteristics in the current sheet of solar flares.

The related research results were published in the journal Nature Astronomy on July 27, 2020.

Solar eruption is the most violent energy release process in the solar system, which is usually accompanied by solar flares and coronal mass ejections (CMEs). In the standard flare model, the large-scale current sheet of magnetic reconnection is considered as the core engine of driving the rapid release of the magnetic energy and the particle acceleration.

However, due to lack of observations on the magnetic field property and high-energy particles near the current sheet, the key question such as the location and the mechanism of energy release and particle acceleration in solar flares is still open.

Prof. CHEN Bin et al. analyzed the microwave radiation near the current sheet in an X-class flare event on September 10, 2017 by using the Expanded Owens Valley Solar Array (EOVSA) data and the numerical experiment based on the Lin-Forbes model developed by Prof. LIN Jun et al.

Lin-Forbes model is a theoretical solar eruption model for quantitative descriptions of the overall evolution in the magnetic field structure and its physical relation to magnetic reconnection during solar eruptive process. It is often used by researchers in the solar physics community to help interpret the observational phenomena, reveal the corresponding physical scenario and understand the physics behind it.

The research group found that the magnetic field in the current sheet shows a local maximum at the X-point of magnetic reconnection, and a local minimum in the region between the bottom of the current sheet and the top of the flare loop (also known as the magnetic bottle).

The microwave energy spectrum shows that the acceleration or accumulation of more than 99% relativistic electrons are likely to occur in the magnetic bottle region at the top of the flare loop, rather than near the reconnecting X-point.

These results not only provide direct observational evidence for solving the problem of particle acceleration in the solar eruptive process, but also confirm the Lin-Forbes model.

The finding is the fruit of good international academic collaboration.

Chinese Academy of Sciences Headquarters

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to