Mental fatigue of multiple sclerosis linked to inefficient recruitment of neural resources

July 28, 2020

East Hanover, NJ. July 28, 2020. Researchers at Kessler Foundation conducted a pilot study comparing the effects of mental fatigue on brain activation patterns in people with and without multiple sclerosis (MS). Their findings indicate significant differences between the two groups in their recruitment of neural resources in response to increased task demands. The article, "Neural mechanisms underlying state mental fatigue in multiple sclerosis: A pilot study," was published in the Journal of Neurology on April 29, 2020. (Doi: 10.1007/s00415-09853-w) The authors are Michelle H. Chen, PhD, Glenn Wylie, DPhil, Rosalia Dacosta-Aguayo, PhD, John DeLuca, PhD, and Helen Genova, PhD, of Kessler Foundation, and Brian M. Sandroff, PhD, of the University of Alabama at Birmingham.

This pilot study extended the Foundation's investigation into the neural correlates of mental fatigue in MS. Mental fatigue comprises two types, state and trait, which are typically measured subjectively. The current study focused on state fatigue, which fluctuates over minutes to hours; trait fatigue is stable over longer periods, usually weeks.

The study comprised 36 participants, 19 with MS, and 17 controls. Participants underwent functional magnetic resonance imaging (fMRI) while performing the Symbol Digit Modalities Test (SDMT), a standard cognitive test modified for use with fMRI. Changes in brain activity were recorded while the SDMT was administered under two conditions: high and low cognitive loads. Neuroimaging studies were conducted at the research-dedicated Rocco Ortenzio Neuroimaging Center at Kessler Foundation.

"We found higher levels of fatigue and longer response times in the MS group," said Dr. Chen, postdoctoral fellow in the Center for Neuropsychology and Neuroscience Research at Kessler Foundation. "With increasing mental fatigue, the control group showed increased activation of the anterior brain regions and faster speed of response, to meet the demands of the high load condition, " added Dr. Chen. "The MS group did not show activation of these regions or an increase in processing speed, suggesting a less efficient response to the higher cognitive demands of the task."

Results of the pilot study were consistent with prior research into the functional reorganization of brain activity in response to mental fatigue, according to Dr. Genova, assistant director of the Center for Neuropsychology and Neuroscience Research. "In the absence of effective treatment for the disabling fatigue that affects many individuals with MS, it is essential to expand our understanding of these underlying brain mechanisms. Using fMRI allows us to determine how individuals with MS differ from their peers without MS in their cerebral responses to cognitive challenges, an important first step in the development of interventions to counter mental fatigue."
-end-
Abstract link: https://pubmed.ncbi.nlm.nih.gov/32350648/

Funding sources: National Multiple Sclerosis Society (CA1069-A-7, MB-1606-08779, RG4232A1); Kessler Foundation

About Kessler Foundation

Kessler Foundation, a major nonprofit organization in the field of disability, is a global leader in rehabilitation research that seeks to improve cognition, mobility and long-term outcomes, including employment, for people with neurological disabilities caused by diseases and injuries of the brain and spinal cord. Kessler Foundation leads the nation in funding innovative programs that expand opportunities for employment for people with disabilities. For more information, visit KesslerFoundation.org.

For more information, or to interview an expert, contact: Carolann Murphy, 973.324.8382, CMurphy@KesslerFoundation.org.

Kessler Foundation

Related Multiple Sclerosis Articles from Brightsurf:

New therapy improves treatment for multiple sclerosis
A new therapy that binds a cytokine to a blood protein shows potential in treating multiple sclerosis, and may even prevent it.

'Reelin' in a new treatment for multiple sclerosis
In an animal model of multiple sclerosis (MS), decreasing the amount of a protein made in the liver significantly protected against development of the disease's characteristic symptoms and promoted recovery in symptomatic animals, UTSW scientists report.

Not all multiple sclerosis-like diseases are alike
Scientists say some myelin-damaging disorders have a distinctive pathology that groups them into a unique disease entity.

New therapeutic options for multiple sclerosis in sight
Strategies for treating multiple sclerosis have so far focused primarily on T and B cells.

Diet has an impact on the multiple sclerosis disease course
The short-chain fatty acid propionic acid influences the intestine-mediated immune regulation in people with multiple sclerosis (MS).

The gut may be involved in the development of multiple sclerosis
It is incompletely understood which factors in patients with multiple sclerosis act as a trigger for the immune system to attack the brain and spinal cord.

Slowing the progression of multiple sclerosis
Over 77,000 Canadians are living with multiple sclerosis, a disease whose causes still remain unknown.

7T MRI offers new insights into multiple sclerosis
Investigators from Brigham and Women's Hospital have completed a new study using 7 Tesla (7T) MRI -- a far more powerful imaging technology -- to further examine LME in MS patients

How to improve multiple sclerosis therapy
Medications currently used to treat multiple sclerosis (MS) can merely reduce relapses during the initial relapsing-remitting phase.

Vaccinations not a risk factor for multiple sclerosis
Data from over 12,000 multiple sclerosis (MS) patients formed the basis of a study by the Technical University of Munich (TUM) which investigated the population's vaccination behavior in relation to MS.

Read More: Multiple Sclerosis News and Multiple Sclerosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.