Nav: Home

Solving a DNA mystery

July 28, 2020

"A watched pot never boils," as the saying goes, but that was not the case for UC Santa Barbara researchers watching a "pot" of liquids formed from DNA. In fact, the opposite happened.

With research partners at the Ludwig-Maximilians University (LMU), in Munich, Germany, the team's findings appear in the Proceedings of the National Academy of Sciences.

Recent advances in cellular biology have enabled scientists to learn that the molecular components of living cells (such as DNA and proteins) can bind to each other and form liquid droplets that appear similar to oil droplets in shaken salad dressing. These cellular droplets interact with other components to carry out basic processes that are critical to life, yet little is known about how the interactions function. To gain insight into these fundamental processes, the researchers used modern methods of nanotechnology to engineer a model system -- a liquid droplet formed from particles of DNA -- and then watched those droplets as they interacted with a DNA-cleaving enzyme.

Surprisingly, they found that, in certain cases, adding the enzyme caused the DNA droplets to suddenly start bubbling, like boiling water.

"The bizarre thing about the bubbling DNA is that we didn't heat the system; it's as if a pot of water started boiling even though you forgot to turn on the stove," said project co-leader Omar Saleh, a UC Santa Barbara assistant professor of materials and bioengineering. However, the bubbling behavior didn't always occur; sometimes adding the enzyme would cause the droplets to shrink away smoothly, and it was unclear why one response or the other would occur.

To get to the bottom of this mystery, the team carried out a rigorous set of precision experiments to quantify the shrinking and bubbling behaviors. They identified two types of shrinking behavior: the first caused by enzymes cutting the DNA only on the droplet surface, and the second caused by enzymes penetrating inside the droplet. "This observation was critical to unraveling the behavior, as it put into our heads the idea that the enzyme could start nibbling away at the droplets from the inside," said co-leader Tim Liedl, a professor at the LMU, where the experiments were conducted.

By comparing the droplet response to the DNA particle design, the team cracked the case: they found that bubbling and penetration-based shrinking occurred together, and happened only when the DNA particles were lightly bound together, whereas strongly bound DNA particles would keep the enzyme on the outside. As Saleh noted, "It's like trying to walk through a crowd -- if the crowd is tightly holding hands, you wouldn't be able to get through."

The bubbles, then, happen only in the lightly bound systems, when the enzyme can get through the crowded DNA particles to the interior of the droplet, and begin to eat away at the droplet from the inside. The chemical fragments created by the enzyme lead to an osmotic effect in which water is drawn in from the outside, causing a swelling phenomenon that produces the bubbles. The bubbles grow, reach the droplet surface, and then release the fragments in a burp-like gaseous outburst. "It is quite striking to watch, as the bubbles swell and pop over and over," said Liedl.

The work demonstrates a complex relationship between the basic material properties of a biomolecular liquid and its interactions with external components. The team believes that the insight gained from studying the bubbling process will lead both to better models of living processes and to enhanced abilities to engineer liquid droplets for use as synthetic bioreactors.

The research was made possible by an award to Saleh from the Alexander von Humboldt Foundation, which enabled him to visit Munich and work directly with Liedl on this project. "These types of international collaborations are extremely productive," Saleh said.

University of California - Santa Barbara

Related Dna Articles:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.
Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.
Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.
Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.
Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.
Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.