How clean water technologies could get a boost from X-ray synchrotrons

July 28, 2020

The world needs clean water, and its need is only going to grow in the coming decades. Yet desalination and other water-purifying technologies are often expensive and require a lot of energy to run, making it that much harder to provide more clean water to a growing population in a warming world.

To move forward, researchers should use tools such as those available at X-ray synchrotrons to better measure the properties of materials involved in purifying salty or otherwise contaminated water, argue scientists at the Department of Energy's SLAC National Accelerator Laboratory and the University of Paderborn in Germany,

"This is an opportune time for the country really - national labs, academia and industrial partners - to advance the science related to desalination" and other clean water technologies, said Michael Toney, a distinguished scientist at SLAC's Stanford Synchrotron Radiation Lightsource. Toney together with coauthors SSRL scientist Sharon Bone and Paderborn's Professor Hans-Georg Steinrück have just published a new perspective on advancing clean water technology in the journal Joule.

The challenge is substantial. Around the world, billions of people struggle to find clean drinking water at least one month a year, and projections suggest that demands for water in some parts of the U.S. - including California, which struggles with droughts - will outpace supply by about 2050.

On top of that, desalinating or otherwise cleaning water is often costly and energy inefficient - and it's not always clear how to improve those technologies.

For instance, in membrane reverse osmosis, saltwater flows over a membrane under pressure, pushing clean water through the membrane into a freshwater stream and retaining salt, organics, and contaminants on the salty water stream. Yet researchers do not understand in much detail the physical and chemical processes responsible for that filtering or how some of the pitfalls of reverse osmosis - such as fouling, the accumulation of organic and inorganic matter on the membrane - interfere with the process.

"It's the complexity of these systems that make them so difficult to probe, and that's why the synchrotron is so valuable, because it allows us to probe that," Prof Steinrück said.

If researchers did understand better how reverse osmosis worked and how it can get fouled up, they could find clues to improve the process and to develop new materials for clean water technologies. X-ray spectroscopy, for example, could reveal which molecules are most responsible for fouling. X-ray scattering experiments and imaging methods, such as electron microscopy, could give scientists and engineers a better picture of what's happening on a fine scale. The same goes for other techniques, such as capacitive ionization, a technique that works best on low-salinity or brackish groundwater and is closely related to cutting-edge battery research. What's more, this fine-scale understanding could allow researchers to design new materials for desalination and to mitigate fouling.

That kind of research is also an opportunity for scientists to make more of a direct impact on an increasingly pressing global problem - a factor that motivated Bone, who also works to understand how pollutants and nutrients alike cycle through natural ecosystems, to work with colleagues at SLAC and chemical engineers at Stanford University on clean water technologies. Working with Stanford chemical engineering graduate student Valerie Niemann and Professor William Tarpeh, Bone and Toney have already begun investigating how foulants accumulate on reverse osmosis membranes.

"I wanted to join this effort because I saw it as an opportunity to directly work on a technology that could make an impact in the face of climate change," Bone said.
The research was funded by the SLAC Director's Fund. SSRL is a DOE Office of Science user facility.

DOE/SLAC National Accelerator Laboratory

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to