Nav: Home

Researchers discover 'Marie Kondo' protein which aids in organizing fruit fly embryos

July 28, 2020

AURORA, Colo. (July 28, 2020) - Researchers at the University of Colorado School of Medicine have discovered a protein in fruit fly embryos, dubbed Marie Kondo, that destroys maternal proteins. Much like namesake, author and clutter consultant Marie Kondo, this gene removes unnecessary molecules, keeping embryos organized.

Fertilized egg cells are loaded with maternal molecules that control the earliest steps of embryonic development. A critical stage of development is when the embryo destroys these inherited molecules and begins to make its own. These molecules include proteins and messenger RNAs (which encode instructions for making proteins). Existing research had identified how messenger RNAs are destroyed, but how maternal proteins are discarded, however, has been unknown.

According to the study, published in the journal eLife, researchers discovered the presence of the Marie Kondo protein by screening ~150 possible enzymes using a trick where destruction of maternal proteins could be seen with fluorescent microscopy. After months of work, they identified the enzyme and gave it the name "Marie Kondo."

"Ordinarily, when we talk about getting rid of maternal gene products, we tend to focus on mRNA, or the coded information for making a protein," says Olivia Rissland, assistant professor of biochemistry and molecular genetics at the University of Colorado School of Medicine and study co-author. "However, we don't often talk about destruction of the proteins themselves. One implication of our study is that, during early stages of development, destruction of maternal proteins might be more tightly controlled than we had thought."

Rissland says this discovery opens the door to more research into embryonic protein destruction. "The reason why we started looking at these proteins is because they control RNA. Now, we want to see what other proteins are destroyed and how protein destruction affects early development, not just in fruit flies, but in other animals too."
-end-
About the University of Colorado Anschutz Medical Campus

The University of Colorado Anschutz Medical Campus is a world-class medical destination at the forefront of transformative science, medicine, education, and patient care. The campus encompasses the University of Colorado health professional schools, more than 60 centers and institutes, and two nationally ranked independent hospitals that treat more than two million adult and pediatric patients each year. Innovative, interconnected and highly collaborative, together we deliver life-changing treatments, patient care, professional training, and conduct world-renowned research. For more information, visit http://www.cuanschutz.edu.

>

University of Colorado Anschutz Medical Campus

Related Proteins Articles:

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.
Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.
New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.