# NYU physicists show way to count sweets in a jar -- from inside the jar

July 29, 2009How many sweets fit into a jar? This question depends on the shapes and sizes of the sweets, the size of the jar, and how it is filled. Surprisingly, this ancient question remains unanswered because of the complex geometry of the packing of the sweets. Moreover, as any contestant knows, guessing the number of sweets in the jar is difficult because the sweets located at the center of the jar are hidden from view and can't be counted. Researchers at New York University have now determined how sweets pack from inside the jar, making it easier to more accurately count them.

To answer the question of how particles pack in general, the NYU team made a transparent, fluorescent packing of oil droplets in water, which allowed it to record three-dimensional images and examine the local geometry of each member of the pack. In other words, what does a packing look like from the point of view of a grain within--i.e., a "granocentric" view?

Their findings, which appear in the latest issue of the journal

*Nature,*show that packing strongly depends on the size distribution--larger particles pack with more neighbors than do smaller ones. Nevertheless, the average number of contacts per particle always stays the same to preserve mechanical stability.

These experimental clues led the researchers to develop a model that successfully captures the geometry, connectivity, and density of the observed sphere packings. This means that starting from a set of particles of known sizes, the density of packing can be determined, making it possible to guess the number of sweets in the jar. Indeed, the model was able to also predict experimentally observed trends in density for mixtures of particles of two different sizes with varying ratios.

Packing problems are important in technological settings as well, ranging from oil extraction through porous rocks to grain storage in silos to the compaction of pharmaceutical powders into tablets. The ability to predict the packing of polydisperse particles--a range of sizes in a single system--has significant impact on these and related technologies.

-end-

The research was conducted by the group led by Jasna Brujic, an assistant professor in NYU's Department of Physics, consisting of post-doctoral researchers Maxime Clusel and Eric Corwin and junior research scientist Alexander Siemens.The Brujic Laboratory is part of NYU's Center for Soft Matter Research. For more on the Brujic Laboratory, go to http://www.physics.nyu.edu/~jb2929/index.html; for more on the center, go to http://csmr.as.nyu.edu/page/home.

New York University

## Related Geometry Articles from Brightsurf:

Six years in 120 pages: Researchers shed light on Ricci flows

Researchers from University of Science and Technology of China (USTC) proved two core conjectures in geometric analysis: Hamilton-Tian conjecture and the Partial C0-conjecture.

Biophysics - geometry supersedes simulations

Ludwig-Maximilians-Universitaet (LMU) in Munich physicists have introduced a new method that allows biological pattern-forming systems to be systematically characterized with the aid of mathematical analysis.

Memory in a metal, enabled by quantum geometry

Berkeley researchers led by Professor Xiang Zhang in collaboration with a Stanford University team invented a new data storage method by making odd numbered layers slide relative to even-number layers in tungsten ditelluride, which is only 3nm thick.

"Inchworm" pattern of Indonesian earthquake rupture powered seismic "boom"

A sonic boom-like seismic phenomenon of supershear rupture occurred during the 2018 Palu earthquake in Indonesia.

Order from noise: How randomness and collective dynamics define a stem cell

Without stem cells, human life would not exist. Due to them, a lump of cells becomes an organ, and a fertilized egg develops into a baby.

Geometry of intricately fabricated glass makes light trap itself

Laser light traveling through ornately microfabricated glass has been shown to interact with itself to form self-sustaining wave patterns called solitons.

22,000 tiny tremblors illustrate 3D fault geometry and earthquake swarm evolution

By mapping the more than 22,000 tremblors, researchers composed a detailed, three-dimensional image of the complex fault structure below southern California's Cahuilla Valley.

NUI Galway mathematician publishes article in world's top mathematics journal

An Irish mathematician, Dr Martin Kerin, from the School of Mathematics, Statistics and Applied Mathematics at NUI Galway, has had a research article published in the Annals of Mathematics, widely regarded as the top journal for pure mathematics in the world.

Geometry guided construction of earliest known temple, built 6,000 years before Stonehenge

Researchers at Tel Aviv University and the Israel Antiquities Authority have now used architectural analysis to discover that geometry informed the layout of GĂ¶bekli Tepe's impressive round stone structures and enormous assembly of limestone pillars, which they say were initially planned as a single structure.

How to break new records in the 200 metres?

Usain Bolt's 200m record has not been beaten for ten years and Florence Griffith Joyner's for more than thirty years.

Read More: Geometry News and Geometry Current Events

Researchers from University of Science and Technology of China (USTC) proved two core conjectures in geometric analysis: Hamilton-Tian conjecture and the Partial C0-conjecture.

Biophysics - geometry supersedes simulations

Ludwig-Maximilians-Universitaet (LMU) in Munich physicists have introduced a new method that allows biological pattern-forming systems to be systematically characterized with the aid of mathematical analysis.

Memory in a metal, enabled by quantum geometry

Berkeley researchers led by Professor Xiang Zhang in collaboration with a Stanford University team invented a new data storage method by making odd numbered layers slide relative to even-number layers in tungsten ditelluride, which is only 3nm thick.

"Inchworm" pattern of Indonesian earthquake rupture powered seismic "boom"

A sonic boom-like seismic phenomenon of supershear rupture occurred during the 2018 Palu earthquake in Indonesia.

Order from noise: How randomness and collective dynamics define a stem cell

Without stem cells, human life would not exist. Due to them, a lump of cells becomes an organ, and a fertilized egg develops into a baby.

Geometry of intricately fabricated glass makes light trap itself

Laser light traveling through ornately microfabricated glass has been shown to interact with itself to form self-sustaining wave patterns called solitons.

22,000 tiny tremblors illustrate 3D fault geometry and earthquake swarm evolution

By mapping the more than 22,000 tremblors, researchers composed a detailed, three-dimensional image of the complex fault structure below southern California's Cahuilla Valley.

NUI Galway mathematician publishes article in world's top mathematics journal

An Irish mathematician, Dr Martin Kerin, from the School of Mathematics, Statistics and Applied Mathematics at NUI Galway, has had a research article published in the Annals of Mathematics, widely regarded as the top journal for pure mathematics in the world.

Geometry guided construction of earliest known temple, built 6,000 years before Stonehenge

Researchers at Tel Aviv University and the Israel Antiquities Authority have now used architectural analysis to discover that geometry informed the layout of GĂ¶bekli Tepe's impressive round stone structures and enormous assembly of limestone pillars, which they say were initially planned as a single structure.

How to break new records in the 200 metres?

Usain Bolt's 200m record has not been beaten for ten years and Florence Griffith Joyner's for more than thirty years.

Read More: Geometry News and Geometry Current Events

Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.