Nav: Home

Solar cells get a boost from bouncing light

July 29, 2011

A new twist on an old solar cell design sends light ricocheting through layers of microscopic spheres, increasing its electricity-generating potential by 26 percent.

By engineering alternating layers of nanometer and micrometer particles, a team of engineers from the University of Minnesota has improved the efficiency of a type of solar cell by as much as 26 percent. These cells, known as dye-sensitized solar cells (DSSC), are made of titanium dioxide (TiO2), a photosensitive material that is less expensive than the more traditional silicon solar cells, which are rapidly approaching the theoretical limit of their efficiency. Current DSSC designs, however, are only about 10 percent efficient. One reason for this low efficiency is that light from the infrared portion of the spectrum is not easily absorbed in the solar cell. The new layered design, as described in the AIP's Journal of Renewable and Sustainable Energy, increases the path of the light through the solar cell and converts more of the electromagnetic spectrum into electricity. The cells consist of micrometer-scale spheres with nanometer pores sandwiched between layers of nanoscale particles. The spheres, which are made of TiO2, act like tightly packed bumpers on a pinball machine, causing photons to bounce around before eventually making their way through the cell. Each time the photon interacts with one of the spheres, a small charge is produced. The interfaces between the layers also help enhance the efficiency by acting like mirrors and keeping the light inside the solar cell where it can be converted to electricity. This strategy to increase light-harvesting efficiency can be easily integrated into current commercial DSSCs.
-end-
Article: "Layered mesoporous nanostructures for enhanced light harvesting in dye-sensitized solar cells" is accepted for publication in the Journal of Renewable and Sustainable Energy.

Authors: Bin Liu (1) and Eray S. Aydil (1)

(1) University of Minnesota

American Institute of Physics

Related Solar Cell Articles:

Simulations pinpoint atomic-level defects in solar cell nanostructures
Heterogeneous nanostructured materials are widely used in various optoelectronic devices, including solar cells.
Light can improve perovskite solar cell performance
Publishing in Nature, EPFL scientists show how light affects perovskite film formation in solar cells, which is a critical factor in using them for cost-effective and energy-efficient photovoltaics.
Solar cell design with over 50 percent energy-conversion efficiency
Solar cells convert the sun's energy into electricity by converting photons into electrons.
Scientists lay foundations for new type of solar cell
An interdisciplinary team of researchers has laid the foundations for an entirely new type of photovoltaic cell.
Stability challenge in perovskite solar cell technology
New research reveals intrinsic instability issues of iodine-containing perovskite solar cells.
New way to make low-cost solar cell technology
Researchers at the Australian National University have found a new way to fabricate high efficiency semi-transparent perovskite solar cells in a breakthrough that could lead to more efficient and cheaper solar electricity.
New perovskite solar cell design could outperform existing commercial technologies
Stanford and Oxford scientists have created new perovskite solar cells that that could rival and even outperform conventional cells made of silicon.
New advances in solar cell technology
Bringing the dream of utilizing cost-effective renewable energy resources into reality: new, more effective solar cells can be make through novel perovskite research.
Solar cell is more efficient, costs less than its counterparts
A team of researchers from MIT and the Masdar Institute of Science and Technology has developed a new solar cell that combines two different layers of sunlight-absorbing material to harvest a broader range of the sun's energy and that costs less than its counterparts.
Flipping crystals improves solar-cell performance
In a step that could bring perovskite crystals closer to use in the burgeoning solar power industry, researchers from Los Alamos National Laboratory, Northwestern University and Rice University have tweaked their crystal production method and developed a new type of two-dimensional layered perovskite with outstanding stability and more than triple the material's previous power conversion efficiency.

Related Solar Cell Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...