Mercury's magnetic field tells scientists how its interior is different from Earth's

July 29, 2014

Earth and Mercury are both rocky planets with iron cores, but Mercury's interior differs from Earth's in a way that explains why the planet has such a bizarre magnetic field, UCLA planetary physicists and colleagues report.

Measurements from NASA's Messenger spacecraft have revealed that Mercury's magnetic field is approximately three times stronger at its northern hemisphere than its southern one. In the current research, scientists led by Hao Cao, a UCLA postdoctoral scholar working in the laboratory of Christopher T. Russell, created a model to show how the dynamics of Mercury's core contribute to this unusual phenomenon.

The magnetic fields that surround and shield many planets from the sun's energy-charged particles differ widely in strength. While Earth's is powerful, Jupiter's is more than 12 times stronger, and Mercury has a rather weak magnetic field. Venus likely has none at all. The magnetic fields of Earth, Jupiter and Saturn show very little difference between the planets' two hemispheres.

Within Earth's core, iron turns from a liquid to a solid at the inner boundary of the planet's liquid outer core; this results in a solid inner part and liquid outer part. The solid inner core is growing, and this growth provides the energy that generates Earth's magnetic field. Many assumed, incorrectly, that Mercury would be similar.

"Hao's breakthrough is in understanding how Mercury is different from the Earth so we could understand Mercury's strongly hemispherical magnetic field," said Russell, a co-author of the research and a professor in the UCLA College's department of Earth, planetary and space sciences. "We had figured out how the Earth works, and Mercury is another terrestrial, rocky planet with an iron core, so we thought it would work the same way. But it's not working the same way."

Mercury's peculiar magnetic field provides evidence that iron turns from a liquid to a solid at the core's outer boundary, say the scientists, whose research currently appears online in the journal Geophysical Research Letters and will be published in an upcoming print edition.

"It's like a snow storm in which the snow formed at the top of the cloud and middle of the cloud and the bottom of the cloud too," said Russell. "Our study of Mercury's magnetic field indicates iron is snowing throughout this fluid that is powering Mercury's magnetic field."

The research implies that planets have multiple ways of generating a magnetic field.

Hao and his colleagues conducted mathematical modeling of the processes that generate Mercury's magnetic field. In creating the model, Hao considered many factors, including how fast Mercury rotates and the chemistry and complex motion of fluid inside the planet.

The cores of both Mercury and Earth contain light elements such as sulfur, in addition to iron; the presence of these light elements keeps the cores from being completely solid and "powers the active magnetic field-generation processes," Hao said.

Hao's model is consistent with data from Messenger and other research on Mercury and explains Mercury's asymmetric magnetic field in its hemispheres. He said the first important step was to "abandon assumptions" that other scientists make.

"Planets are different from one another," said Hao, whose research is funded by a NASA fellowship. "They all have their individual character."
Co-authors include Jonathan Aurnou, professor of planetary science and geophysics in UCLA's Department of Earth, Planetary and Space Sciences, and Johannes Wicht, a research scientist at Germany's Max Planck Institute for Solar System Research.

University of California - Los Angeles

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to