Breastfeeding associated with better brain development and neurocognitive outcomes

July 29, 2016

A new study, which followed 180 pre-term infants from birth to age seven, found that babies who were fed more breast milk within the first 28 days of life had had larger volumes of certain regions of the brain at term equivalent and had better IQs, academic achievement, working memory, and motor function.

The findings were published online Friday, July 29, in The Journal of Pediatrics.

"Our data support current recommendations for using mother's milk to feed preterm babies during their neonatal intensive care unit (NICU) hospitalization. This is not only important for moms, but also for hospitals, employers, and friends and family members, so that they can provide the support that's needed during this time when mothers are under stress and working so hard to produce milk for their babies," says Mandy Brown Belfort, MD, a researcher and physician in the Department of Newborn Medicine at Brigham and Women's Hospital and lead author.

Researchers studied infants born before 30 weeks gestation that were enrolled in the Victorian Infant Brain Studies cohort from 2001-2003. They determined the number of days that infants received breast milk as more than 50 percent of of their nutritional intake from birth to 28 days of life. Additionally, researchers examined data related to regional brain volumes measured by magnetic resonance imaging (MRI) at each baby's term equivalent age and at seven years old, and also looked at cognitive (IQ, reading, mathematics, attention, working memory, language, visual perception) and motor testing at age seven.

The findings show that, accross all babies, infants who received predominantly breast milk on more days during their NICU hospitalization had larger deep nuclear gray matter volume, an area important for processing and transmitting neural signals to other parts of the brain, at term equivalent age, and by age seven, performed better in IQ, mathematics, working memory, and motor function tests. Overall, ingesting more human milk correlated with better outcomes, including larger regional brain volumes at term equivalent and improved cognitive outcomes at age 7.

"Many mothers of preterm babies have difficulty providing breast milk for their babies, and we need to work hard to ensure that these mothers have the best possible support systems in place to maximize their ability to meet their own feeding goals. It's also important to note that there are so many factors that influence a baby's development, with breast milk being just one," says Belfort.

Researchers note some limitations on the study, including that it was observational. Although they adjusted for factors such as differences in maternal education, some of the effects could possibly be explained by other factors that were not measured, such as greater maternal involvement in other aspects of infant care.

Belfort adds that future studies using other MRI techniques could provide more information about the specific ways in which human milk intake may influence the structure and function of the brain. Future work is also needed to untangle the role of breastfeeding from other types of maternal care and nurturing on development of the preterm baby's brain.
-end-
Funding was provided by the Australia's National Health & Medical Research Council, National Institutes of Health (HD058056), United Cerebral Palsy Foundation (USA), Leila Y. Mathers Charitable Foundation (USA), the Brown Foundation (USA), the Victorian Government's Operational Infrastructure Support Program, and The Royal Children's Hospital Foundation. VAN was supported by the Cambridge Commonwealth Travelling Bursary, St. John's College, Cambridge; Mary Euphrasia Mosley and Sir Bartle Frere Fund; Lord Mayor's 800th Anniversary Awards Trust; Nichol Young Foundation; and the Worts Travelling Scholars' Award.

Brigham and Women's Hospital

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.