Nav: Home

Novel 'repair system' discovered in algae may yield new tools for biotechnology

July 29, 2016

ITHACA, NY--A new way of fixing inactive proteins has been discovered in an algae, which uses chloroplast extracts and light to release an interrupting sequence from a protein.

Research specialist Stephen Campbell and Professor David Stern at the Boyce Thompson Institute report the discovery in the July 29 issue of the Journal of Biological Chemistry. This repair system may have applications in agriculture and biotechnology because it could potentially be harnessed to enable proteins to become active only in the light.

Many proteins contain extra sequences, called insertions, that can disrupt their function. The current paper demonstrates that the algae Chlamydomonas reinhardtii has the necessary toolkit to repair proteins by removing these insertions.

Campbell discovered this new repair system while purifying a protein from the chloroplasts of C. reinhardtii that can cut RNA. Upon sequencing the protein, he identified it as RB47, a protein that was not known to have any RNA-cleaving ability. Campbell noticed that the middle of the protein was missing. When he compared the protein sequence to its corresponding gene sequence, the protein was much shorter than expected.

Upon further study, Campbell found that he could detect a long version of the protein that contained an insertion and a short version that didn't. The cells make both versions when grown in the light or the dark, but only the short version can cleave RNA. The long version of the protein could be converted into the short one by mixing it in a test tube with chloroplasts from cells grown in the light and by illuminating the reaction. This process removed the interrupting insertion and restored the RNA-cutting activity of the protein. It is likely that the chloroplast maintains the machinery necessary to remove the sequence so that it can restore functionality to the protein.

This new type of repair system provides intriguing possibilities for biotech applications.

Because the insertion can be placed so that it interrupts a protein's function, the insertion and repair system may be useful for producing certain pharmaceuticals or protein products--such as cancer drugs--in culture, which would otherwise kill the cell. After purification, the inactive products could be treated with chloroplast factors and light to remove the insertion and activate the proteins.

In future work, the researchers plan to investigate exactly how the insertion becomes spliced out of the protein and which plant factors facilitate its removal. They also aim to understand the purpose of the insertion, and whether the algae can control the splicing to respond to changes in the environment.

Campbell and Stern also want to know how widespread this new type of protein splicing might be.

"If it is happening in plants, is it happening in animals?" said Stern. "We're pretty sure that this protein is just one example; that we have only found the tip of the iceberg."
-end-
The study was supported by the U.S. National Science Foundation, award MCB-1244106.

URL: http://www.jbc.org/cgi/doi/10.1074/jbc.M116.727768

Media Relations Contacts: Patricia Waldron (607-254-7476, pjw85@cornell.edu) or Kitty Gifford (607-592-3062, kmg35@cornell.edu)

Communications Office

Boyce Thompson Institute
533 Tower Road
Ithaca, New York 14853 USA

To learn more about Boyce Thompson Institute (BTI) research, visit the BTI website at http://bti.cornell.edu.

Connect online with BTI at http://www.facebook.com/BoyceThompsonInstitute and http://www.twitter.com/BTIScience.

About Boyce Thompson Institute

Boyce Thompson Institute is a premier life sciences research institution located in Ithaca, New York on the Cornell University campus. BTI scientists conduct investigations into fundamental plant and life sciences research with the goals of increasing food security, improving environmental sustainability in agriculture and making basic discoveries that will enhance human health.

BTI employs 150 staff, with scientists from 40 countries around the world and has twice been named as one of the Best Companies in New York State. Its 15 principal investigators are leading minds in plant development, chemical ecology, microbiology and plant pathology, and have access to the institute's state-of-the-art greenhouse facilities with computerized controls and a system of integrated pest management. BTI has one of the largest concentrations of plant bioinformaticists in the U.S., with researchers who work across the entire spectrum of "omics" fields. BTI researchers consistently receive funding from NSF, NIH, USDA and DOE and publish in top tier journals. Throughout its work, BTI is committed to inspiring and educating students and to providing advanced training for the next generation of scientists. For more information, visit http://www.bti.cornell.edu.

Boyce Thompson Institute

Related Proteins Articles:

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
New tool for the crystallization of proteins
ETH researchers have developed a new method of crystallizing large membrane proteins in order to determine their structure.
New interaction mechanism of proteins discovered
UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves.
When proteins shake hands
Protein nanofibres often have outstanding properties such as a high stability, biodegradability, or antibacterial effect.
Proteins' fluorescence a little less mysterious
Rice University scientists use simulations to understand the mechanism behind a popular fluorescent protein used to monitor signals between neurons.
New study suggests health benefits of swapping animal proteins for plant proteins
Substituting one to two servings of animal proteins with plant proteins every day could lead to a small reduction in the three main cholesterol markers for cardiovascular disease prevention, a new study suggests.
More Proteins News and Proteins Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.