Nav: Home

Predicting the properties of subatomic particles using large scale computer simulations

July 29, 2017

Predicting the properties of subatomic particles before their experimental discovery has been a big challenge for physicists. In a recent paper published on 28 July in Physical Review Letters Nilmani Mathur from the Tata Institute of Fundamental Research, Mumbai, and M. Padmanath, a former student from TIFR, have predicted the quantum numbers of five Ω0c baryons which have recently been discovered by an experiment at the Large Hadron Collider (the LHCb collaboration) at CERN. These results will help in understanding the nature of strong interactions in the Universe.

A baryon is a composite subatomic particle made of three valence quarks and is bound by gluons through strong interactions. The most well known baryon is the proton which along with an electron constitutes a hydrogen atom. A simplistic picture of a proton is a combination of two up quarks and one down quark. In the theory of strong interactions there are six quarks each with three colours charges. This theory allows any combination of a quark and an anti-quark as well as any combination of three quarks in a colour neutral state resulting in varieties of subatomic particles called mesons and baryons, respectively. The discovery of many mesons and baryons since the middle of the 20th century, has played a crucial role in understanding the nature of strong interactions. It is expected that many other mesons and baryons will be discovered in ongoing experiments at CERN and future high energy experiments.

These recently discovered baryons are called Ω0c* made of two strange quarks and one charm quark. These are the excited states of Ω0c baryon, much like the excited states of the hydrogen atom.

Quantum Chromodynamics (QCD) which is believed to be the theory of strong interactions, is a highly non-linear theory and can be solved analytically only at very high energies where the strength of interactions is quite small. Till date there is no analytical solution of QCD to obtain the properties of subatomic particles, like the proton and Ωc. This demands the numerical implementation of QCD on space-time lattices which is known as lattice QCD (LQCD). LQCD methods can describe the spectrum of subatomic particles and also their properties, like decay constants. LQCD also plays a crucial role in understanding matter under high temperature and density similar to the condition in the early stages of the universe.

In this work Padmanath and Nilmani predicted the quantum numbers of these newly discovered Ω0c baryons which were otherwise unknown experimentally. Infact, Padmanath's thesis work predicted the masses of these particles four year before their discovery. Using state-of-the-art methods of LQCD and computational resources of the Department of Theoretical Physics and the Indian Lattice Gauge Theory Initiative (ILGTI), they performed a precise and systematic determination of energies and quantum numbers for the tower of excited states of Ω0c baryons. Their predicted results are compared with experimental findings (see table). Predicted quantum numbers of these particles will help to understand the properties of these particles which in turn will help to understand the nature of strong interactions.

Since 2001 Nilmani and his collaborators have predicted the masses of various other subatomic particles with different quark contents some of which have already been discovered (after they were predicted) and many others will presumably be discovered in future experiments. For example, their prediction of the mass of Ξcc baryon (a baryon made of two charm quarks and a light quark) in as early as 2001 and as late as 2014 was confirmed by the discovery of this particle on July 6, 2017, by the LHCb collaboration.

Nilmani and Padmanath along with other theoretical physicists at TIFR are currently studying the properties of various subatomic particles, particularly those made of heavy quarks, using large scale computer simulations. They use the computational facilities of ILGTI's high performance computer center at the Balloon Facility, Hyderabad, which hosts a Cray supercomputer. The results of their work will help to understand the nature of strong interactions in the Universe.

Tata Institute of Fundamental Research

Related Large Hadron Collider Articles:

Profits of large pharmaceutical companies compared to other large public companies
Data from annual financial reports were used to compare the profitability of 35 large pharmaceutical companies with 357 companies in the S&P 500 Index from 2000 to 2018.
Near misses at Large Hadron Collider shed light on the onset of gluon-dominated protons
New findings from University of Kansas researchers center on work at the Large Hadron Collider to better understand the behavior of gluons.
Springer Nature publishes study for a CERN next generation circular collider
Back in January, CERN released a conceptual report outlining preliminary designs for a Future Circular Collider (FCC), which if built, would have the potential to be the most powerful particle collider the world over.
Large cells for tiny leaves
Scientists identify protein that controls leaf growth and shape.
NYU Physicists develop new techniques to enhance data analysis for large hadron collider
NYU physicists have created new techniques that deploy machine learning as a means to significantly improve data analysis for the Large Hadron Collider (LHC), the world's most powerful particle accelerator.
Mini antimatter accelerator could rival the likes of the Large Hadron Collider
Researchers have found a way to accelerate antimatter in a 1000x smaller space than current accelerators, boosting the science of exotic particles.
A domestic electron ion collider would unlock scientific mysteries of atomic nuclei
The science questions that could be answered by an electron ion collider (EIC) -- a very large-scale particle accelerator - are significant to advancing our understanding of the atomic nuclei that make up all visible matter in the universe, says a new report by the National Academies of Sciences, Engineering, and Medicine.
How large can a tsunami be in the Caribbean?
The 2004 Indian Ocean tsunami has researchers reevaluating whether a magnitude 9.0 megathrust earthquake and resulting tsunami might also be a likely risk for the Caribbean region, seismologists reported at the SSA 2018 Annual Meeting.
Meet the 'odderon': Large Hadron Collider experiment shows potential evidence of quasiparticle sought for decades
A team of high-energy experimental particle physicists, including several from the University of Kansas, has uncovered possible evidence of a subatomic quasiparticle dubbed an
The pros and cons of large ears
Researchers at Lund University in Sweden have compared how much energy bats use when flying, depending on whether they have large or small ears.
More Large Hadron Collider News and Large Hadron Collider Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at