Nav: Home

A breakthrough of monitoring energy storage at work using optical fibers

July 29, 2018

An optic fiber sensing system developed by researchers in China and Canada can peer inside supercapacitors and batteries to observe their state of charge. Renewable energy sources are naturally inconsistent, and so require new energy storage technologies. Supercapacitors offer rapid charging and long-term storage, but it is important to be able to monitor their working state. To tackle this issue, a team including Tuan Guo and Wenjie Mai at Jinan University adapted an approach that based on an optical fiber-based plasmonic sensor. The sensor is embedded inside the capacitor and is able to measure the state of charge of the electrodes and electrolytes in real time, while it operates, and over its lifetime. The sensor demonstrated a clear and repeatable high correlation between measurements of the optical transmission of the fiber device and simultaneous supercapacitor's state of charge, offering a unique, low-cost method for real-time monitoring of energy storage devices in operation. This result has been published and selected as the front cover of the recent issue of Light: Science & Applications (July 11, 2018), with a manuscript title of In Situ Plasmonic Optical Fiber Detection of the State of Charge of Supercapacitors for Renewable Energy Storage. This work has also been highlighted in the official website of the National Natural Science Foundation of China.

Electrochemical energy storage devices (such as supercapacitors) are considered to be the new generation of energy storage devices with the highest energy storage efficiency and very promising prospects. They are widely used in clean electric power, electric vehicles, mobile medical, portable electronic devices and other fields. In situ and continuous monitoring the electrochemical activities of energy storage devices is a key way for understanding and evaluation of their mechanism and operation quality. However, the present methods cannot offer the real time charge state information when the energy storage devices are in operation. They are required to take the supercapacitors off line (thus interrupting their function) and carrying out electrical measurements and even in some cases opening up the supercapacitors to examine their components by electron microscopy.

To address this fundamental challenge, Prof. Guo and Prof. Mai and their colleague report an original and reliable optical technique to monitor the health of this important energy storage device used to regulate the power supplied by renewable energy sources. This approach is based on an optical fiber-based plasmonic sensor that is embedded inside the capacitor and that is able to measure the state of charge of the electrodes and electrolytes in real time, while it operates, and over its lifetime. Such optical fiber devices are small enough to be inserted near the surface of the capacitor electrodes, and being based on telecommunication-grade fibers, they can be left there and monitored remotely at any time and from any distance. Another important aspect of their approach is that in contrast to current techniques that rely on an indirect estimate of the state of charge from current/voltage tests, the optical fiber devices detect the amount of charge accumulated in a sub-micrometer sized layer on the electrodes and the adjacent electrolyte directly through its impact on the plasmonic properties of a nanometer-scale gold coating applied to the fiber surface. It demonstrated a clear and repeatable high correlation between measurements of the optical transmission of the fiber device and simultaneous electrical validation measurements. This new technology will have important implications for energy suppliers who rely on renewable energy sources from sun, wind and hydro-electricity for at least part of their power grid requirements. The main implication is that faulty or deteriorating capacitors will be identified before catastrophic failures can occur, and that no interruption of power systems will be required for testing them.
-end-


Changchun Institute of Optics, Fine Mechanics and Physics

Related Optical Fiber Articles:

Scientists print nanoscale imaging probe onto tip of optical fiber
A team of researchers has developed a way to print a nanoscale imaging probe onto the tip of a glass fiber as thin as a human hair, accelerating the production of the promising new device from several per month to several per day.
Researchers develop recycling for carbon fiber composites
A WSU research team for the first time has developed a promising way to recycle the popular carbon fiber plastics that are used in everything from modern airplanes and sporting goods to the wind energy industry.
Four year agreement to supply Silicon Carbide micro-fiber
Haydale Graphene Industries plc the UK listed global nanomaterials group, is pleased to announce that its subsidiary, Advanced Composite Materials LLC, has entered into a four-year agreement to supply Silicon Carbide micro-fiber to a global industrial manufacturer of tooling and wear-resistant solutions.
New 'tougher-than-metal' fiber-reinforced hydrogels
Scientists have succeeded in creating 'fiber-reinforced soft composites,' or tough hydrogels combined with woven fiber fabric.
New discovery: Nanometric imprinting on fiber
Researchers at EPFL have come up with a way of imprinting nanometric patterns on the inside and outside of polymer fibers.
High fiber diets may alleviate inflammation caused by gout
New research published in the Journal of Leukocyte Biology, shows that a high-fiber diet likely inhibits gout-related inflammation caused by monosodium urate (MSU) crystals.
Ultra-high-speed optical fiber sensor enables detection of structural damage in real time
A research group including members from Tokyo Institute of Technology and Japan Society for the Promotion of Science has developed a real-time fiber-optic distributed sensing system for strain and temperature.
Study explains strength gap between graphene, carbon fiber
Carbon fibers used to strengthen composite materials can be made stronger than advertised, according to materials scientists at Rice University.
PolyU's proprietary optical fiber sensing network for railway monitoring exported overseas
The Hong Kong Polytechnic University's proprietary optical fiber sensing technology in monitoring railway has been adopted overseas, for the first time, in metro lines in Singapore.
1,400 km of optical fiber connect optical clocks in France and Germany
High-precision optical frequencies can now 'travel' through a 1,400 km optical fiber link between LNE-SYRTE (Systèmes de Référence Temps-Espace) and PTB (Physikalisch-Technische Bundesanstalt), where the most precise optical clocks in Europe are operated.

Related Optical Fiber Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.