Identity-shifting cells protect against rupture in atherosclerosis

July 29, 2019

Changing your identity to protect others might sound like something reserved for comic book vigilantes, but a study led by researchers at the Stanford University School of Medicine has found a select group of cells in artery walls do just that.

For these cells, the identity shift happens in a disease called atherosclerosis, which occurs when arteries get clogged by plaque, a buildup of fats, cholesterol and molecular particulate.

"We know that things like poor diet and lack of exercise contribute to atherosclerosis," said Thomas Quertermous, MD, professor of cardiovascular medicine at Stanford. "But molecularly speaking, researchers still don't know how the disease progresses or, conversely, is hindered." This new work, he said, takes a big step toward addressing that question.

Plaque grows within the layers of tissue that form the artery, as opposed to inside the tube itself, causing the blood conduit to narrow. Too much plaque tears open the tissue, allowing the built-up gunk to flood the interior of the tube. That leads to a clot, which can cause artery blockage and often a heart attack.

In people with atherosclerosis, cells that make up the artery wall transform and invade the area containing the plaque, or lesion, and form something called a fibrous cap, which acts kind of like a lid to prevent the plaque from bursting into the artery. Now, Quertermous and his colleagues have characterized the identity of these transformed cells, giving key insights into something called plaque stability, which determines the likelihood of a plaque bursting. The more robust the fibrous cap, the more stable the plaque and the less likely it is to rupture.

The team has also pinpointed a gene that seems to be behind the cells' transformation. What's more, when they looked at populationwide genomic data, they saw that individuals who had more activity in this particular gene were at a decreased risk for heart attack.

"Logically, it makes sense -- the more cells that help form the fibrous cap, the stronger the protection against plaque rupture and therefore the less risk of a heart attack," said Quertermous, who is the William G. Irwin Professor in Cardiovascular Medicine.

A paper describing the details of the study will be published July 29 in Nature Medicine. Quertermous is the senior author. The lead author is Robert Wirka, MD, instructor of cardiovascular medicine.

Smooth muscle cells to the rescue

Under healthy conditions, the smooth muscle cells that make up the wall of arteries control the vessel's dilation, expanding and contracting to regulate blood flow and blood pressure. But when plaque in the artery starts to build, smooth muscle cells begin to shift.

The cells actually move toward the plaque lesion, Wirka said. The genes that make the smooth muscle cells begin to shut off and, in their place, new genes turn on. Then, like Clark Kent to Superman, the smooth muscle cells ditch their everyday identity for a heroic version of themselves -- the fibromyocyte, similar to a fibroblast, a cell type known for its role in connective tissue and collagen production. The fibromyocytes then form a protective cap over the cholesterol, fat and molecular debris that compose arterial plaque.

"It's kind of like a scab over a wound," Quertermous said. "Only in this case, the scab also keeps the plaque stable."

Researchers have known that smooth muscle cells reinvent themselves during atherosclerosis, but it wasn't clear exactly what their new identity was. Scientists thought these cells could have a beneficial role, but also suspected they could transform into dysfunctional immune cells that promote inflammation and worsen the condition.

To figure out the smooth muscle cells' intentions, Wirka, Quertermous and their colleagues used an experimental technique in mice called lineage tracing, which allowed the scientists to track the whereabouts of specific cells and cells derived from those cells. The group labeled arterial smooth muscle cells in the mice with a special chemical that turns the cells red under a microscope. Then, after inducing a mouse version of atherosclerosis, they checked the arteries for signs of smooth muscle cell movement. They observed that some of the red-labeled smooth muscle cells had moved into the plaque from their original homes in the artery.

New place, new name

Wirka and Quertermous then profiled all the cells in the artery, analyzed the collection of cells -- immune, smooth muscle, fibromyocyte and more -- and ran gene expression analyses to see which genes were "on" in each individual cell. According to the gene expression analysis, the red-labeled smooth muscle cells that migrated to the plaque were sporting a new look.

"These cells exhibited a sort of swap: Patterns of gene activity that track with smooth muscle cells decreased, and activity of genes that give rise to fibromyocytes increased," Quertermous said. "The data allowed us to, beyond a shadow of a doubt, characterize these particular cells in the plaque as smooth muscle cells that have turned into fibromyocytes." Remarkably, Wirka said, the researchers found no evidence that smooth muscle cells transformed into plaque-destabilizing immune cells, resolving a long-standing question in the field.

Next, Quertermous and Wirka used a form of computer modeling to bridge mouse biology to humans. They took tissue samples from human patients with atherosclerosis who'd received heart transplants. The scientists analyzed cells from the human arteries with the same single-cell gene expression method used in the mouse tissue.

With data from both human and mouse atherosclerotic tissue, the computer model accurately identified cell types, regardless of species. Importantly, the researchers found the same phenomenon occurring in the human arteries: Smooth muscle cells were also transforming into fibromyocytes during human disease.

The gene behind the transition

Quertermous and Wirka went even one step further, identifying the gene that seems to drive the transition from smooth muscle cell to fibromyocyte during atherosclerosis. In Quertermous' earlier work, he identified one particular gene, TCF21, that was associated with a person's risk for coronary artery disease.

"It's been my theory all along that TCF21 gets reactivated in the vessel wall and is a key contributor to this cell type transition," Quertermous said.

So he tested that theory in a mouse model of atherosclerosis, disabling the TCF21 gene to see if it exacerbated the disease. He and Wirka saw that mice without TCF21 formed fewer fibromyocytes overall, fewer fibromyocyte cells in the plaque and a less-sturdy fibrous cap.

Quertermous and Wirka said that TCF21 could likely help guide them toward a new therapy for coronary artery disease. But before taking steps in that direction, there's still more to understand about TCF21 and how it mediates this transformation at the molecular level, they said. "Now we have good evidence that the ability for smooth muscle cells to undergo this transformation to fibromyocytes is important to protect against clinically significant coronary disease, but the timing and extent of this transformation is likely also important," Wirka said.
Other Stanford co-authors of the study are senior research scientist Dhananjay Wagh, PhD; postdoctoral scholars David Paik, PhD, Milos Pjanic, PhD, and Manabu Nagao, PhD; lab managers Trieu Nguyen and Robyn Fong; research scientist Ramendra Kundu, PhD; John Coller, PhD, director of the Stanford Functional Genomics Facility; research assistant Tiffany Koyano; Joseph Woo, MD, professor of cardiothoracic surgery; former graduate student Boxiang Liu, PhD; Stephen Montgomery, PhD, associate professor of pathology; Joseph Wu, MD, PhD, professor of cardiovascular medicine and of radiology; and Juyong Kim, MD, instructor of medicine.

Quertermous is a member of Stanford Bio-X, the Stanford Cardiovascular Institute and the Stanford Maternal & Child Health Research Institute.

Researchers from the University of Virginia, the University of Arizona and University of Hawaii also contributed to the work.

The research was funded by the National Institutes of Health. Stanford's Department of Medicine also supported the work.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit The medical school is part of Stanford Medicine, which includes Stanford Health Care and Stanford Children's Health. For information about all three, please visit

Stanford Medicine

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to