Nav: Home

Seeking new physics, scientists borrow from social networks

July 29, 2019

CAMBRIDGE, Mass. -- When two protons collide, they release pyrotechnic jets of particles, the details of which can tell scientists something about the nature of physics and the fundamental forces that govern the universe.

Enormous particle accelerators such as the Large Hadron Collider can generate billions of such collisions per minute by smashing together beams of protons at close to the speed of light. Scientists then search through measurements of these collisions in hopes of unearthing weird, unpredictable behavior beyond the established playbook of physics known as the Standard Model.

Now MIT physicists have found a way to automate the search for strange and potentially new physics, with a technique that determines the degree of similarity between pairs of collision events. In this way, they can estimate the relationships among hundreds of thousands of collisions in a proton beam smashup, and create a geometric map of events according to their degree of similarity.

The researchers say their new technique is the first to relate multitudes of particle collisions to each other, similar to a social network.

"Maps of social networks are based on the degree of connectivity between people, and for example, how many neighbors you need before you get from one friend to another," says Jesse Thaler, associate professor of physics at MIT. "It's the same idea here."

Thaler says this social networking of particle collisions can give researchers a sense of the more connected, and therefore more typical, events that occur when protons collide. They can also quickly spot the dissimilar events, on the outskirts of a collision network, which they can further investigate for potentially new physics. He and his collaborators, graduate students Patrick Komiske and Eric Metodiev, carried out the research at the MIT Center for Theoretical Physics and the MIT Laboratory for Nuclear Science. They detail their new technique this week in the journal Physical Review Letters.

Seeing the data agnostically

Thaler's group focuses, in part, on developing techniques to analyze open data from the LHC and other particle collider facilities in hopes of digging up interesting physics that others might have initially missed.

"Having access to this public data has been wonderful," Thaler says. "But it's daunting to sift through this mountain of data to figure out what's going on."

Physicists normally look through collider data for specific patterns or energies of collisions that they believe to be of interest based on theoretical predictions. Such was the case for the discovery of the Higgs boson, the elusive elementary particle that was predicted by the Standard Model. The particle's properties were theoretically outlined in detail but had not been observed until 2012, when physicists, knowing approximately what to look for, found signatures of the Higgs boson hidden amid trillions of proton collisions.

But what if particles exhibit behavior beyond what the Standard Model predicts, that physicists have no theory to anticipate?

Thaler, Komiske, and Metodiev have landed on a novel way to sift through collider data without knowing ahead of time what to look for. Rather than consider a single collision event at a time, they looked for ways to compare multiple events with each other, with the idea that perhaps by determining which events are more typical and which are less so, they might pick out outliers with potentially interesting, unexpected behavior.

"What we're trying to do is to be agnostic about what we think is new physics or not," says Metodiev. "We want to let the data speak for itself."

Moving dirt

Particle collider data are jam-packed with billions of proton collisions, each of which comprises individual sprays of particles. The team realized these sprays are essentially point clouds -- collections of dots, similar to the point clouds that represent scenes and objects in computer vision. Researchers in that field have developed an arsenal of techniques to compare point clouds, for example to enable robots to accurately identify objects and obstacles in their environment.

Metodiev and Komiske utilized similar techniques to compare point clouds between pairs of collisions in particle collider data. In particular, they adapted an existing algorithm that is designed to calculate the optimal amount of energy, or "work" that is needed to transform one point cloud into another. The crux of the algorithm is based on an abstract idea known as the "earth's mover's distance."

"You can imagine deposits of energy as being dirt, and you're the earth mover who has to move that dirt from one place to another," Thaler explains. "The amount of sweat that you expend getting from one configuration to another is the notion of distance that we're calculating."

In other words, the more energy it takes to rearrange one point cloud to resemble another, the farther apart they are in terms of their similarity. Applying this idea to particle collider data, the team was able to calculate the optimal energy it would take to transform a given point cloud into another, one pair at a time. For each pair, they assigned a number, based on the "distance," or degree of similarity they calculated between the two. They then considered each point cloud as a single point and arranged these points in a social network of sorts.

The team has been able to construct a social network of 100,000 pairs of collision events, from open data provided by the LHC, using their technique. The researchers hope that by looking at collision datasets as networks, scientists may be able to quickly flag potentially interesting events at the edges of a given network.

"We'd like to have an Instagram page for all the craziest events, or point clouds, recorded by the LHC on a given day," says Komiske. "This technique is an ideal way to determine that image. Because you just find the thing that's farthest away from everything else."

Typical collider datasets that are made publicly available normally include several million events, which have been preselected from an original chaos of billions of collisions that occurred at any given moment in a particle accelerator. Thaler says the team is working on ways to scale up their technique to construct larger networks, to potentially visualize the "shape," or general relationships within an entire dataset of particle collisions.

In the near future, he envisions testing the technique on historical data that physicists now know contain milestone discoveries, such as the first detection in 1995 of the top quark, the most massive of all known elementary particles.

"The top quark is an object that gives rise to these funny, three-pronged sprays of radiation, which are very dissimilar from typical sprays of one or two prongs," Thaler says. "If we could rediscover the top quark in this archival data, with this technique that doesn't need to know what new physics it is looking for, it would be very exciting and could give us confidence in applying this to current datasets, to find more exotic objects."
This research was funded, in part, by the U.S. Department of Energy, the Simons Foundation, and the MIT Quest for Intelligence.

Written by Jennifer Chu, MIT News Office


ARCHIVE: First open-access data from large collider confirm subatomic particle patterns

Massachusetts Institute of Technology

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.