Nav: Home

Oddball edge wins nanotube faceoff

July 29, 2019

HOUSTON - (July 29, 2019) - When is a circle less stable than a jagged loop? Apparently when you're talking about carbon nanotubes.

Rice University theoretical researchers have discovered that nanotubes with segregated sections of "zigzag" and "armchair" facets growing from a solid catalyst are far more energetically stable than a circular arrangement would be.

Under the right circumstances, they reported, the interface between a growing nanotube and its catalyst can reach its lowest-known energy state via the two-faced "Janus" configuration, with a half-circle of zigzags opposite six armchairs.

The terms refer to the shape of the nanotube's edge: A zigzag nanotube's end looks like a saw tooth, while an armchair is like a row of seats with armrests. They are the basic edge configurations of the two-dimensional honeycomb of carbon atoms known as graphene (as well as other 2D materials) and determine many of the materials' properties, especially electrical conductivity.

The Brown School of Engineering team of materials theorist Boris Yakobson, researcher and lead author Ksenia Bets and assistant research professor Evgeni Penev reported their results in the American Chemical Society journal ACS Nano.

The theory is a continuation of the team's discovery last year that Janus interfaces are likely to form on a catalyst of tungsten and cobalt, leading to a single chirality, called (12,6), that other labs had reported growing in 2014.

The Rice team now shows such structures aren't unique to a specific catalyst, but are a general characteristic of a number of rigid catalysts. That's because the atoms attaching themselves to the nanotube edge always seek their lowest energy states, and happen to find it in the Janus configuration they named AZ.

"People have assumed in studies that the geometry of the edge is a circle," Penev said. "That's intuitive -- it's normal to assume that the shortest edge is the best. But we found for chiral tubes the slightly elongated Janus edge allows it to be in much better contact with solid catalysts. The energy for this edge can be quite low."

In the circle configuration, the flat armchair bottoms rest on the substrate, providing the maximum number of contacts between the catalyst and the nanotube, which grows straight up. (Janus edges force them to grow at an angle.)

Carbon nanotubes -- long, rolled-up tubes of graphene -- are difficult enough to see with an electron microscope. As yet there's no way to observe the base of a nanotube as it grows from the bottom up in a chemical vapor deposition furnace. But theoretical calculations of the atom-level energy that passes between the catalyst and the nanotube at the interface can tell researchers a lot about how they grow.

That's a path the Rice lab has pursued for more than a decade, pulling at the thread that reveals how minute adjustments in nanotube growth can change the kinetics, and ultimately how nanotubes can be used in applications.

"Generally, the insertion of new atoms at the nanotube edge requires breaking the interface between the nanotube and the substrate," Bets said. "If the interface is tight, it would cost too much energy. That is why the screw dislocation growth theory proposed by Professor Yakobson in 2009 was able to connect the growth rate with the presence of kinks, the sites on the nanotube edge that disrupt the tight carbon nanotube-substrate contact.

"Curiously, even though Janus edge configuration allows very tight contact with the substrate it still preserves a single kink that would allow continuous nanotube growth, as we demonstrated last year for the cobalt tungsten catalyst," Bets said.

Bets ran extensive computer simulations to model nanotubes growing on three rigid catalysts that showed evidence of Janus growth and one more "fluid" catalyst, tungsten carbide, that did not. "The surface of that catalyst is very mobile, so the atoms can move a lot," Penev said. "For that one, we did not observe a clear segregation."

Yakobson compared Janus nanotubes to the Wulff shape of crystals. "It's somewhat surprising that our analysis suggests a restructured, faceted edge is energetically favored for chiral tubes," he said. "Assuming that the lowest energy edge must be a minimal-length circle is like assuming that a crystal shape must be a minimal-surface sphere but we know well that 3D shapes have facets and 2D shapes are polygons, as epitomized by the Wulff construction. 

"Graphene has by necessity several 'sides,' but a nanotube cylinder has one rim, making the energy analysis different," he said. "This raises fundamentally interesting and practically important questions about the relevant structure of the nanotube edges."

The Rice researchers hope their discovery will advance them along the path toward those answers. "The immediate implication of this finding is a paradigm shift in our understanding of growth mechanisms," Yakobson said. "That may become important in how one practically designs the catalyst for efficient growth, especially of controlled nanotube symmetry type, for electronic and optical utility."
-end-
David Ruth 713-348-6327 david@rice.edu

Mike Williams 713-348-6728 mikewilliams@rice.edu

Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and of Chemistry. The National Science Foundation (NSF) and the Air Force Office of Scientific Research supported the research.

Computing resources were provided by the Department of Defense Supercomputing Resource Center; the National Energy Research Scientific Computing Center, supported by the Department of Energy Office of Science; the NSF-supported XSEDE supercomputer; and the NSF-supported DAVinCI cluster at Rice, administered by the Center for Research Computing and procured in partnership with Rice's Ken Kennedy Institute for Information Technology.

Read the abstract at https://pubs.acs.org/doi/10.1021/acsnano.9b02061.

This news release can be found online at http://news.rice.edu/2019/07/29/oddball-edge-wins-nanotube-faceoff/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:


Two-faced edge makes nanotubes obey: http://news.rice.edu/2018/07/26/two-faced-edge-makes-nanotubes-obey-2/

Caps not the culprit in nanotube chirality: http://news.rice.edu/2014/02/17/caps-not-the-culprit-in-nanotube-chirality/

Yakobson Research Group: https://biygroup.blogs.rice.edu

George R. Brown School of Engineering: https://engineering.rice.edu

Department of Materials Science and NanoEngineering: https://msne.rice.edu

Images for download:

https://news-network.rice.edu/news/files/2019/07/0729_JANUS-1-WEB.jpg

Rice University researchers have determined that an odd, two-faced "Janus" edge is more common than previously thought for carbon nanotubes growing on a rigid catalyst. The conventional nanotube at left has facets that form a circle, allowing the nanotube to grow straight up from the catalyst. But they discovered the nanotube at right, with a tilted Janus edge that has segregated sections of zigzag and armchair configurations, is far more energetically favored when growing carbon nanotubes via chemical vapor deposition. (Credit: Illustration by Evgeni Penev/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.

Rice University

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.