Nav: Home

Cannabidiol reduces aggressiveness, study concludes

July 29, 2019

A new study has concluded that cannabidiol attenuates the aggressiveness induced by social isolation. The research, based on a mouse model, was performed by scientists at the University of São Paulo's Ribeirão Preto Medical School (FMRP-USP) in Brazil. The results are published in the journal Progress in Neuro-Psychopharmacology and Biological Psychiatry.

"Our study shows that cannabidiol can inhibit aggressiveness and that it does so by facilitating the activation of two receptors: the 5-HT1A receptor, responsible for the effects of the neurotransmitter serotonin, and the CB1 receptor, responsible for the effects of endocannabinoids," said Francisco Silveira Guimarães, Full Professor at FMRP-USP and leader of the study.

Although it is extracted from marijuana, cannabidiol does not produce dependency or have psychotomimetic (psychosis-like) effects, Guimarães stressed. The component of marijuana responsible for these effects is tetrahydrocannabinol (THC). Cannabidiol actually inhibits some effects of THC.

"Cannabidiol has been studied in various contexts for the past 20 years, but very little research has been done into its effects on aggressive behavior," Guimarães said.

Scientists at the University of São Paulo's Center for Applied Research in Neuroscience (NAPNA-USP) also contributed to the new study, which was part of the São Paulo Research Foundation - FAPESP funded Thematic Project "New perspectives in the use of drugs that modify atypical neurotransmitters in the treatment of neuropsychiatric disorders".

The study was also supported by the National Council for Scientific and Technological Development (CNPq), a Brazilian government agency.

Isolation-induced aggression is a classical behavioral model used in experiments, Guimarães explained. "Isolation-induced aggression can be attenuated by the administration of anxiolytic, anti-depressant or anti-psychotic drugs. Preclinical and clinical studies have shown that cannabidiol has these properties, so we decided to test its effect on induced aggressiveness," he said.

"We used a model known as the resident-intruder test, which induces aggressiveness in an animal kept in isolation for several days."

To determine whether the effects of cannabidiol could alter the resident's aggressive behavior, the researchers injected four groups, each comprising six to eight male mice, with different doses.

A fifth group acted as a control and was not given cannabidiol. The mice in this group displayed classical resident-intruder behavior. The first attacks by residents on intruders occurred two minutes after they were confronted on average. Between 20 and 25 attacks were recorded while the animals were in the same cage.

In the first group, resident mice received a cannabidiol dose equivalent to 5 milligrams per kilo (mg/kg). Each male weighed 30-40 grams. Attacks began approximately four minutes after intruders entered the cage, double the time taken for control mice to begin attacking intruders, and the number of attacks fell by half.

The second group received 15 mg/kg and behaved less aggressively than any of the others. Attacks began 11 minutes after the intruder's arrival on average, and the number of attacks averaged only approximately five per cage.

The third and fourth groups received 30 mg/kg and 60 mg/kg, respectively, but these higher doses did not result in more intense inhibition of their aggressiveness. In contrast, attacks began sooner, and the number of attacks was also slightly higher.

"This reduction in the effect of cannabidiol at higher doses was expected from the results of other studies. In experiments to investigate its potential as an antidepressant, for example, higher doses led to lower effects after an initial gain. In our experiment, if we had tested 120 mg/kg on a group of mice, we might not have obtained any inhibition of the resident's aggressiveness at all," Guimarães said.

Blocking the effect

Because the scientists already knew that cannabidiol facilitates activation of the 5-HT1A serotonin receptor, they repeated the resident-intruder model in a second batch of experiments, but now administered different doses of the 5-HT1A receptor antagonist WAY100635.

The aim was to determine whether the anti-aggressive effect of cannabidiol could be cancelled out or attenuated using WAY100635, as the researchers hypothesized.

"That was indeed the case. In resident mice given intermediate doses of WAY100635 before cannabidiol, the time it took for the first attack to occur after the intruder entered the cage was very close to the time taken by residents in the control group to attack. Control mice weren't given the drug and began attacking intruders after about two minutes," Guimarães said.

The same applied to the number of attacks. All mice given WAY100635 before cannabidiol, regardless of the dose, attacked intruders almost as many times as the controls.

Data from the literature and the laboratory itself suggest that cannabidiol also inhibits an enzyme that metabolizes the endocannabinoid anandamide. Endocannabinoids are neurotransmitters produced throughout the central nervous system, including the brain. Anandamide binds to type 1 cannabinoid receptors (CB1), which are also activated by THC, the main psychoactive cannabinoid in marijuana.

To determine whether this mechanism might also be involved in the anti-aggressive effect of cannabidiol, the researchers conducted a resident-intruder test using AM251, a CB1 receptor antagonist, combined with cannabidiol. The results were similar.

"The anti-aggressive effect of cannabidiol was attenuated by WAY100635, the 5-HT1A receptor antagonist, when dosed at 0.3 mg/kg, and by AM251, the CB1 receptor antagonist, at 1 mg/kg, suggesting that cannabidiol attenuates isolation-induced aggressive behavior by means of a mechanism associated with activation of 5-HT1A receptors and CB1 receptors," Guimarães said.

"We don't yet know how the 5-HT1A and CB1 receptors affect aggressiveness in mice, but the activation mechanisms involved appear to be different in each case."
-end-
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.