Nav: Home

Ultra-thin layers of rust generate electricity from flowing water

July 29, 2019

There are many ways to generate electricity--batteries, solar panels, wind turbines, and hydroelectric dams, to name a few examples. .... And now there's rust.

New research conducted by scientists at Caltech and Northwestern University shows that thin films of rust--iron oxide--can generate electricity when saltwater flows over them. These films represent an entirely new way of generating electricity and could be used to develop new forms of sustainable power production.

Interactions between metal compounds and saltwater often generate electricity, but this is usually the result of a chemical reaction in which one or more compounds are converted to new compounds. Reactions like these are what is at work inside batteries.

In contrast, the phenomenon discovered by Tom Miller, Caltech professor of chemistry, and Franz Geiger, Dow Professor of Chemistry at Northwestern, does not involve chemical reactions, but rather converts the kinetic energy of flowing saltwater into electricity.

The phenomenon, the electrokinetic effect, has been observed before in thin films of graphene--sheets of carbon atoms arranged in a hexagonal lattice--and it is remarkably efficient. The effect is around 30 percent efficient at converting kinetic energy into electricity. For reference, the best solar panels are only about 20 percent efficient.

"A similar effect has been seen in some other materials. You can take a drop of saltwater and drag it across graphene and see some electricity generated," Miller says.

However, it is difficult to fabricate graphene films and scale them up to usable sizes. The iron oxide films discovered by Miller and Geiger are relatively easy to produce and scalable to larger sizes, Miller says.

"It's basically just rust on iron, so it's pretty easy to make in large areas," Miller says. "This is a more robust implementation of the thing seen in graphene."

Though rust will form on iron alloys on its own, the team needed to ensure it formed in a consistently thin layer. To do that, they used a process called physical vapor deposition (PVD), which turns normally solid materials, in this case iron oxide, into a vapor that condenses on a desired surface. PVD allowed them to create an iron oxide layer 10 nanometers thick, about 10 thousand times thinner than a human hair.

When they took that rust-coated iron and flowed saltwater solutions of varying concentrations over it, they found that it generated several tens of millivolts and several microamps per cm-2.

"For perspective, plates having an area of 10 square meters each would generate a few kilowatts per hour--enough for a standard US home," Miller says. "Of course, less demanding applications, including low-power devices in remote locations, are more promising in the near term."

The mechanism behind the electricity generation is complex, involving ion adsorption and desorption, but it essentially works like this: The ions present in saltwater attract electrons in the iron beneath the layer of rust. As the saltwater flows, so do those ions, and through that attractive force, they drag the electrons in the iron along with them, generating an electrical current.

Miller says this effect could be useful in specific scenarios where there are moving saline solutions, like in the ocean or the human body.

"For example, tidal energy, or things bobbing in the ocean, like buoys, could be used for passive electrical energy conversion," he says. "You have saltwater flowing in your veins in periodic pulses. That could be used to generate electricity for powering implants."
-end-
The paper describing their findings, titled "Energy Conversion via Metal Nanolayers," appears in the July 29 issue of the Proceedings of the National Academy of Sciences. Other co-authors include Mavis D. Boamah, Emilie H. Lozier, Paul E. Ohno, and Catherine E. Walker of Northwestern, and Jeongmin Kim, a graduate student in chemistry at Caltech.

Support for the research was provided by the National Science Foundation, the Office of Naval Research, the Defense Advanced Research Projects Agency (DARPA), and the Army Research Chemical Sciences Division.

California Institute of Technology

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.