Breakthrough method for predicting solar storms

July 29, 2020

Extensive power outages and satellite blackouts that affect air travel and the internet are some of the potential consequences of massive solar storms. These storms are believed to be caused by the release of enormous amounts of stored magnetic energy due to changes in the magnetic field of the sun's outer atmosphere - something that until now has eluded scientists' direct measurement. Researchers believe this recent discovery could lead to better "space weather" forecasts in the future.

"We are becoming increasingly dependent on space-based systems that are sensitive to space weather. Earth-based networks and the electrical grid can be severely damaged if there is a large eruption", says Tomas Brage, Professor of Mathematical Physics at Lund University in Sweden.

Solar flares are bursts of radiation and charged particles, and can cause geomagnetic storms on Earth if they are large enough. Currently, researchers focus on sunspots on the surface of the sun to predict possible eruptions. Another and more direct indication of increased solar activity would be changes in the much weaker magnetic field of the outer solar atmosphere - the so-called Corona.

However, no direct measurement of the actual magnetic fields of the Corona has been possible so far.

"If we are able to continuously monitor these fields, we will be able to develop a method that can be likened to meteorology for space weather. This would provide vital information for our society which is so dependent on high-tech systems in our everyday lives", says Dr Ran Si, post-doc in this joint effort by Lund and Fudan Universities.

The method involves what could be labelled a quantum-mechanical interference. Since basically all information about the sun reaches us through "light" sent out by ions in its atmosphere, the magnetic fields must be detected by measuring their influence on these ions. But the internal magnetic fields of ions are enormous - hundreds or thousands of times stronger than the fields humans can generate even in their most advanced labs. Therefore, the weak coronal fields will leave basically no trace, unless we can rely on this very delicate effect - the interference between two "constellations" of the electrons in the ion that are close - very close - in energy.

The breakthrough for the research team was to predict and analyze this "needle in the haystack" in an ion (nine times ionized iron) that is very common in the corona.

The work is based on state-of-the art calculations performed in the Mathematical Physics division of Lund University and combined with experiments using a device that could be thought of as being able to produce and capture small parts of the solar corona - the Electron Beam Ion Trap, EBIT, in Professor Roger Hutton's group in Fudan University in Shanghai.

"That we managed to find a way of measuring the relatively weak magnetic fields found in the outer layer of the sun is a fantastic breakthrough", concludes Tomas Brage.
-end-


Lund University

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.