Nav: Home

Cosmic tango between the very small and the very large

July 29, 2020

While Einstein's theory of general relativity can explain a large array of fascinating astrophysical and cosmological phenomena, some aspects of the properties of the universe at the largest-scales remain a mystery. A new study using loop quantum cosmology--a theory that uses quantum mechanics to extend gravitational physics beyond Einstein's theory of general relativity--accounts for two major mysteries. While the differences in the theories occur at the tiniest of scales--much smaller than even a proton--they have consequences at the largest of accessible scales in the universe. The study, which appears online July 29 in the journal Physical Review Letters, also provides new predictions about the universe that future satellite missions could test.

While a zoomed-out picture of the universe looks fairly uniform, it does have a large-scale structure, for example because galaxies and dark matter are not uniformly distributed throughout the universe. The origin of this structure has been traced back to the tiny inhomogeneities observed in the Cosmic Microwave Background (CMB)--radiation that was emitted when the universe was 380 thousand years young that we can still see today. But the CMB itself has three puzzling features that are considered anomalies because they are difficult to explain using known physics.

"While seeing one of these anomalies may not be that statistically remarkable, seeing two or more together suggests we live in an exceptional universe," said Donghui Jeong, associate professor of astronomy and astrophysics at Penn State and an author of the paper. "A recent study in the journal Nature Astronomy proposed an explanation for one of these anomalies that raised so many additional concerns, they flagged a 'possible crisis in cosmology.' Using quantum loop cosmology, however, we have resolved two of these anomalies naturally, avoiding that potential crisis."

Research over the last three decades has greatly improved our understanding of the early universe, including how the inhomogeneities in the CMB were produced in the first place. These inhomogeneities are a result of inevitable quantum fluctuations in the early universe. During a highly accelerated phase of expansion at very early times--known as inflation--these primordial, miniscule fluctuations were stretched under gravity's influence and seeded the observed inhomogeneities in the CMB.

"To understand how primordial seeds arose, we need a closer look at the early universe, where Einstein's theory of general relativity breaks down," said Abhay Ashtekar, Evan Pugh Professor of Physics, holder of the Eberly Family Chair in Physics, and director of the Penn State Institute for Gravitation and the Cosmos. "The standard inflationary paradigm based on general relativity treats space time as a smooth continuum. Consider a shirt that appears like a two-dimensional surface, but on closer inspection you can see that it is woven by densely packed one-dimensional threads. In this way, the fabric of space time is really woven by quantum threads. In accounting for these threads, loop quantum cosmology allows us to go beyond the continuum described by general relativity where Einstein's physics breaks down--for example beyond the Big Bang."

The researchers' previous investigation into the early universe replaced the idea of a Big Bang singularity, where the universe emerged from nothing, with the Big Bounce, where the current expanding universe emerged from a super-compressed mass that was created when the universe contracted in its preceding phase. They found that all of the large-scale structures of the universe accounted for by general relativity
In the new study, the researchers determined that inflation under loop quantum cosmology also resolves two of the major anomalies that appear under general relativity.

"The primordial fluctuations we are talking about occur at the incredibly small Planck scale," said Brajesh Gupt, a postdoctoral researcher at Penn State at the time of the research and currently at the Texas Advanced Computing Center of the University of Texas at Austin. "A Planck length is about 20 orders of magnitude smaller than the radius of a proton. But corrections to inflation at this unimaginably small scale simultaneously explain two of the anomalies at the largest scales in the universe, in a cosmic tango of the very small and the very large."

The researchers also produced new predictions about a fundamental cosmological parameter and primordial gravitational waves that could be tested during future satellite missions, including LiteBird and Cosmic Origins Explorer, which will continue improve our understanding of the early universe.
-end-
In addition to Jeong, Ashtekar, and Gupt, the research team includes V. Sreenath at the National Institute of Technology Karnataka in Surathkal, India. This work was supported by the National Science Foundation, NASA, the Penn State Eberly College of Science, and the Inter-University Center for Astronomy and Astrophysics in Pune, India.

Penn State

Related Astrophysics Articles:

Astrophysics: A direct view of star/disk interactions
'Nature' publication: The GRAVITY instrument developed for the Very Large Telescope in Chile probes deep into the TW Hydrae system to shape our view of accretion processes in young stars similar to the young Sun
Explosive nuclear astrophysics
An international team has made a key discovery related to 'presolar grains' found in some meteorites.
Using techniques from astrophysics, researchers can forecast drought up to ten weeks ahead
Researchers at the University of Sussex have developed a system which can accurately predict a period of drought in East Africa up to ten weeks ahead.
Astrophysics and AI may offer key to early dementia diagnosis
Crucial early diagnosis of dementia in general practice could improve thanks to a computer model designed in a collaboration between Brighton and Sussex Medical School (BSMS) and astrophysicists at the University of Sussex.
Hubble studies gamma-ray burst with highest energy ever seen
NASA's Hubble Space Telescope has given astronomers a peek at the location of the most energetic outburst ever seen in the universe -- a blast of gamma-rays a trillion times more powerful than visible light.
NASA's TESS presents panorama of southern sky
The glow of the Milky Way -- our galaxy seen edgewise -- arcs across a sea of stars in a new mosaic of the southern sky produced from a year of observations by NASA's Transiting Exoplanet Survey Satellite (TESS).
Giant exoplanet around tiny star challenges understanding of how planets form
An international team of researchers with participation from the University of Göttingen has discovered the first large gas giant orbiting a small star.
'Ringing' black hole validates Einstein's general relativity 10 years ahead of schedule
For the first time, astrophysicists have heard a black hole ringing like a bell.
A family of comets reopens the debate about the origin of Earth's water
Where did the Earth's water come from? Although comets, with their icy nuclei, seem like ideal candidates, analyses have so far shown that their water differs from that in our oceans.
Astronomers discover 2,000-year-old remnant of a nova
For the first time, a European research team involving the University of Göttingen has discovered the remains of a nova in a galactic globular cluster.
More Astrophysics News and Astrophysics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.