Genetically engineered tomato plant grows in salty water

July 30, 2001

A genetically engineered tomato plant that thrives in salty irrigation water and may hold the key to one of agriculture's greatest dilemmas has been developed by plant biologists at the University of California, Davis, and the University of Toronto.

As the first truly salt-tolerant crop, these tomatoes offer hope that other crops can also be genetically modified for planting in many areas of the world that have salty irrigation water and salt-damaged soils.

"Since environmental stress due to salinity is one of the most serious factors limiting the productivity of crops, this innovation will have significant implications for agriculture worldwide," said Eduardo Blumwald, who led the research team that discovered the salt-tolerance gene. The research, much of which was done at the University of Toronto, continues in the UC Davis Department of Pomology.

The most recent findings by Blumwald and Hong-Xia Zhang, a postdoctoral fellow at the University of Toronto, will be published July 31 in the August issue of the journal Nature Biotechnology.

Worldwide an estimated 24.7 million acres (10 million hectares) -- about one-fifth the area of California -- of once agriculturally productive land are being lost annually because of irrigation-induced salinity, according to the U.S. Department of Agriculture. Crop production is limited by salinity on 40 percent of the world's irrigated land and on 25 percent of irrigated land in the United States.

This progressive loss of farmable land is on a collision course with the expanding global population, which over the next 30 years is expected to require an increase in food production of 20 percent in developed countries and 60 percent in developing nations.

Although scientists have been trying to develop salt-tolerant crop varieties using selective breeding techniques throughout the past century, none of those efforts has proven successful.

Crop irrigation is an age-old practice that allows farmers to be less dependent on seasonal rainfall and the uncertainties of the weather. However, irrigation also increases the salinity of soils and water by depositing in the fields soluble salts such as sodium, calcium, magnesium, potassium, sulfate and chloride that the water has picked up from the soils and rocks it has passed through. Eventually these salts accumulate in the irrigated soils at levels that decrease the vigor and productivity of the crops grown there.

Salty irrigation water wreaks havoc on most plants by upsetting their ability to take in water through their root cells. In fact, if salt concentrations in the soil are very high, flow of water into the plant is actually reversed and the plant dehydrates and dies as water is drawn out of its cells.

To counter this effect, Blumwald and Zhang genetically engineered tomato plants that produce higher levels of a naturally occurring protein known as a "transport protein." The gene that controls increased production of the transport protein was taken from Arabidopsis, a relative of the cabbage that is commonly used in plant research.

The transport protein uses energy available in the cells to move salt -- in the form of sodium ions -- into compartments within the cells called vacuoles. Once the salt is stashed inside the vacuoles it is isolated from the rest of the cell and unable to interfere with the plant's normal biochemical activity.

These genetically engineered salt-tolerant plants actually remove salt from the soil. And because their salt-storing activity occurs only in the plants' leaves, the quality of the tomato fruit is maintained.

Blumwald and colleagues have demonstrated that the genetically engineered tomato plants grow and produce fruit even in irrigation water that is about 50 times saltier than normal. The plants were irrigated with water having a salt concentration of 200 mM sodium chloride; this is more than one third as salty as seawater, which is about 530 mM sodium chloride.

The tomato discovery is a continuation of Blumwald's research on salt tolerance in plants. In 1999 he and colleagues announced that they had discovered the gene that governs production of the transport protein and genetically engineered salt tolerance in the Arabidopsis plant. They published their findings in the Aug. 20, 1999, issue of the journal Science.

The transgenic tomato plants were grown in greenhouses at the University of Toronto. Blumwald hopes to continue the research at UC Davis, including field trials in salt-damaged soils. He projects that, with proper funding, it would be possible to develop commercially useful salt-tolerant tomato plants within three years.
-end-
Blumwald's transgenic salt-tolerance research was funded by the Natural Sciences and Engineering Research Council of Canada and by the Will W. Lester Endowment from the University of California.

Editor's Note: Blumwald can be interviewed in Spanish.

Media contacts:
-- Eduardo Blumwald, UC Davis Department of Pomology, 530-752-4640, eblumwald@ucdavis.edu (He is away from campus until July 31 but is reachable by cell phone at 416-318-7327 or by e-mail.)
-- George Adams, Innovation Foundations, University of Toronto, 416-978-5729, george.adams@utoronto.ca
-- Janet Wong, University of Toronto Public Affairs, 416-978-6974, jf.wong@utoronto.ca
-- Patricia Bailey, UC Davis News Service, 530-752-9843, pjbailey@ucdavis.edu.

University of California - Davis

Related Irrigation Articles from Brightsurf:

Water consumption for trees is calculated in order to design precision irrigation systems
A University of Cordoba and Spanish National Research Council research team validated an indicator based on using a tree's temperature to calculate relative water consumption at an almond tree plantation

Water-saving alternative forage crops for Texas livestock
With increasing drought conditions in the Texas High Plains, researchers test sorghum and pearl millet as alternatives to corn.

Technology is studied that could save 12% of the energy used in pressurized irrigation
A study, performed in two Andalusian provinces, analyzed the potential of producing electricity by means of recovering hydraulic energy by implanting new technology based on pumps working as turbines

Can oilfield water safely be reused for irrigation in California?
Reusing low-saline oilfield water mixed with surface water to irrigate farms in the Cawelo Water District of California does not pose major health risks, as some opponents of the practice have feared, a study led by Duke University and RTI International researchers finds.

Expansion, environmental impacts of irrigation by 2050 greatly underestimated
New research suggests that the amount of farmland that will need to be irrigated to feed the global population by 2050 could be up to several billion acres, far higher than scientists currently project.

Turned-down temperatures boost crops' penchant for production
Drought and heat put stress on plants and reduce grain yield.

Irrigation alleviates hot extremes
Researchers from ETH Zurich and other universities found evidence that expanding irrigation has dampened anthropogenic warming during hot days, with particularly strong effects over South Asia.

Specifying irrigation needs for container-grown plants
Open-field production of 524,000 irrigated acres of horticultural plants in the United States used 205 billion gallons of water in a recent year.

Water management grows farm profits
A study investigates effects of irrigation management on yield and profit.

Oil and gas wastewater used for irrigation may suppress plant immune systems
A new Colorado State University study gives pause to the idea of using oil and gas wastewater for irrigation.

Read More: Irrigation News and Irrigation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.